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Foreword

The need for a textbook on earthquake engineering was first pointed out by the eminent
consulting engineer, John R. Freeman (1855-1932). Following the destructive Santa Bar-
bara, California earthquake of 1925, he became interested in the subject and searched the
Boston Public Library for relevant books. He found that not only was there no textbook
on earthquake engineering, but the subject itself was not mentioned in any of the books
on structural engineering. Looking back, we can see that in 1925 engineering education
was in an undeveloped state, with computing done by slide rule and curricula that did not
prepare the student for understanding structural dynamics. In fact, no instruments had been
developed for recording strong ground motions, and society appeared to be unconcerned
about earthquake hazards.

In recent years books on earthquake engineering and structural dynamics have been
published, but the present book by Professor Anil K. Chopra fills a niche that exists be-
tween more elementary books and books for advanced graduate studies. The author is a
well-known expert in earthquake engineering and structural dynamics, and his book will
be valuable to students not only in earthquake-prone regions but also in other parts of
the world, for a knowledge of structural dynamics is essential for modern engineering. The
book presents material on vibrations and the dynamics of structures and demonstrates the
application to structural motions caused by earthquake ground shaking. The material in
the book is presented very clearly with numerous worked-out illustrative examples, so that
even a student at a university where such a course is not given should be able to study the
book on his or her own time. Readers who are now practicing engineering should have no
difficulty in studying the subject by means of this book. An especially interesting feature
of the book is the application of structural dynamics theory to important issues in the seis-
mic response and design of multistory buildings. The information presented in this book

xxi



XXii Foreword

will be of special value to those engineers who are engaged in actual seismic design and
want to improve their understanding of the subject.

Although the material in the book leads to earthquake engineering, the information
presented is also relevant to wind-induced vibrations of structures, as well as man-made
motions such as those produced by drophammers or by heavy vehicular traffic. As a text-
book on vibrations and structural dynamics, this book has no competitors and can be rec-
ommended to the serious student. I believe that this is the book for which John R. Freeman
was searching.

George W. Housner
California Institute of Technology



Preface

PHILOSOPHY AND OBJECTIVES

This book on dynamics of structures is conceived as a textbook for courses in civil engi-
neering. It includes many topics in the theory of structural dynamics, and applications of
this theory to earthquake analysis, response, design, and evaluation of structures. No prior
knowledge of structural dynamics is assumed in order to make this book suitable for the
reader learning the subject for the first time. The presentation is sufficiently detailed and
carefully integrated by cross-referencing to make the book suitable for self-study. This fea-
ture of the book, combined with a practically motivated selection of topics, should interest
professional engineers, especially those concerned with analysis and design of structures
in earthquake country.

In developing this book, much emphasis has been placed on making structural dy-
namics easier to learn by students and professional engineers because many find this sub-
ject to be difficult. To achieve this goal, the presentation has been structured around several
features: The mathematics is kept as simple as each topic will permit. Analytical proce-
dures are summarized to emphasize the key steps and to facilitate their implementation by
the reader. These procedures are illustrated by over 120 worked-out examples, including
many comprehensive and realistic examples where the physical interpretation of results is
stressed. Some 500 figures have been carefully designed and executed to be pedagogically
effective; many of them involve extensive computer simulations of dynamic response of
structures. Photographs of structures and structural motions recorded during earthquakes
are included to relate the presentation to the real world.

xxiii



XXiv Preface
The preparation of this book has been inspired by several objectives:

e Relate the structural idealizations studied to the properties of real structures.

e Present the theory of dynamic response of structures in a manner that emphasizes
physical insight into the analytical procedures.

e [llustrate applications of the theory to solutions of problems motivated by practical
applications.

e Interpret the theoretical results to understand the response of structures to various
dynamic excitations, with emphasis on earthquake excitation.

e Apply structural dynamics theory to conduct parametric studies that bring out several
fundamental issues in the earthquake response, design, and evaluation of multistory
buildings.

This mode of presentation should help the reader to achieve a deeper understanding
of the subject and to apply with confidence structural dynamics theory in tackling practi-
cal problems, especially in earthquake analysis, design, and evaluation of structures, thus
narrowing the gap between theory and practice.

EVOLUTION OF THE BOOK

Since the book first appeared in 1995, it has been revised and expanded in several ways,
resulting in the second edition (2001) and third edition (2007). Prompted by an increasing
number of recordings of ground motions in the proximity of the causative fault, Chap-
ter 6 was expanded to identify special features of near-fault ground motions and com-
pare them with the usual far-fault ground motions. Because of the increasing interest in
seismic performance of bridges, examples on dynamics of bridges and their earthquake
response were added in several chapters. In response to the growing need for simpli-
fied dynamic analysis procedures suitable for performance-based earthquake engineering,
Chapter 7 was expanded to provide a fuller discussion relating the earthquake-induced de-
formations of inelastic and elastic systems, and to demonstrate applications of the inelastic
design spectrum to structural design for allowable ductility, displacement-based design,
and seismic evaluation of existing structures. Chapter 19 (now Chapter 20) was rewritten
completely to incorporate post-1990 advances in earthquake analysis and response of in-
elastic buildings. Originally limited to three building codes—United States, Canada, and
Mexico—Chapter 21 (now Chapter 22) was expanded to include the Eurocode. The addi-
tion of Chapter 22 (now Chapter 23) was motivated by the adoption of performance-based
guidelines for evaluating existing buildings by the structural engineering profession.

In response to reader requests, the frequency-domain method of dynamic analysis
was included, but presented as an appendix instead of weaving it throughout the book.
This decision was motivated by my goal to keep the mathematics as simple as each topic
permits, thus making structural dynamics easily accessible to students and professional
engineers.



What's New in this Edition XXV
WHAT’S NEW IN THIS EDITION

Dynamics of Structures has been well received in the 16 years since it was first pub-
lished. It continues to be used as a textbook at universities in the United States and many
other countries, and enjoys a wide professional readership as well. Translations in Japanese,
Korean, Chinese, Greek, and Persian have been published. Preparation of the fourth edition
provided me with an opportunity to improve, expand, and update the book.

Chapter 14 has been added, requiring renumbering of Chapters 14 to 22 as 15 to 23
(the new numbering is reflected in the rest of the Preface); Chapters 5 and 16 underwent
extensive revision; Chapters 12 and 13 have been expanded; and Chapters 22 and 23 have
been updated. Specific changes include:

e Chapter 14 on nonclassically damped systems has been added. This addition has
been motivated by growing interest in such systems that arise in several practi-
cal situations: for example, structures with supplemental energy-dissipating sys-
tems or on a base isolation system, soil-structure systems, and fluid-structure
systems.

e Chapters 5 and 16 on numerical evaluation of dynamic response have been rewritten
to conform with the ways these numerical methods are usually implemented in com-
puter software, and to offer an integrated presentation of nonlinear static analysis—
also known as pushover analysis—and nonlinear dynamic analysis.

e A section has been added at the end of Chapter 12 to present a general version of the
mode acceleration superposition method for more complex excitations, such as wave
forces on offshore drilling platforms.

e Chapter 13 has been extended to include two topics that so far have been con-
fined to the research literature, but are of practical interest: (1) combining peak
responses of a structure to individual translational components of ground motion to
estimate its peak response to multicomponent excitation; and (2) response-spectrum-
based equations to determine an envelope that bounds the joint response trajectory
of all simultaneously acting forces that control the seismic design of a structural
element.

e Chapters 22 and 23 have been updated to reflect the current editions of building codes
for designing new buildings, and of performance-based guidelines and standards for
evaluating existing buildings.

e The addition of Chapter 14 prompted minor revision of Chapters 2, 4, 6, 10,
and 12.

e Several new figures, photographs, worked-out examples, and end-of-chapter prob-
lems have been added.

Using the book in my teaching and reflecting on it over the years suggested improve-
ments. The text has been clarified and polished throughout, and a few sections have been
reorganized to enhance the effectiveness of the presentation.



XXVi Preface
SUBJECTS COVERED

This book is organized into three parts: 1. Single-Degree-of-Freedom Systems; II. Multi-
Degree-of-Freedom Systems; and III. Earthquake Response, Design, and Evaluation of
Multistory Buildings.

Part I includes eight chapters. In the opening chapter the structural dynamics prob-
lem is formulated for simple elastic and inelastic structures, which can be idealized as
single-degree-of-freedom (SDF) systems, and four methods for solving the differential
equation governing the motion of the structure are reviewed briefly. We then study the dy-
namic response of linearly elastic systems (1) in free vibration (Chapter 2), (2) to harmonic
and periodic excitations (Chapter 3), and (3) to step and pulse excitations (Chapter 4).
Included in Chapters 2 and 3 is the dynamics of SDF systems with Coulomb damping, a
topic that is normally not included in civil engineering texts, but one that has become rel-
evant to earthquake engineering, because energy-dissipating devices based on friction are
being used in earthquake-resistant construction. After presenting numerical time-stepping
methods for calculating the dynamic response of SDF systems (Chapter 5), the earthquake
response of linearly elastic systems and of inelastic systems is studied in Chapters 6 and
7, respectively. Coverage of these topics is more comprehensive than in texts presently
available; included are details on the construction of response and design spectra, ef-
fects of damping and yielding, and the distinction between response and design spectra.
The analysis of complex systems treated as generalized SDF systems is the subject of
Chapter 8.

Part IT includes Chapters 9 through 18 on the dynamic analysis of multi-degree-of-
freedom (MDF) systems. In the opening chapter of Part II the structural dynamics problem
is formulated for structures idealized as systems with a finite number of degrees of freedom
and illustrated by numerous examples; also included is an overview of methods for solving
the differential equations governing the motion of the structure. Chapter 10 is concerned
with free vibration of systems with classical damping and with the numerical calculation
of natural vibration frequencies and modes of the structure. Chapter 11 addresses several
issues that arise in defining the damping properties of structures, including experimental
data—from forced vibration tests on structures and recorded motions of structures during
earthquakes—that provide a basis for estimating modal damping ratios, and analytical pro-
cedures to construct the damping matrix, if necessary. Chapter 12 is concerned with the
dynamics of linear systems, where the classical modal analysis procedure is emphasized.
Part C of this chapter represents a “new” way of looking at modal analysis that facilitates
understanding of how modal response contributions are influenced by the spatial distribu-
tion and the time variation of applied forces, leading to practical criteria on the number of
modes to include in response calculation. In Chapter 13, modal analysis procedures for
earthquake analysis of classically damped systems are developed; both response history
analysis and response spectrum analysis procedures are presented in a form that provides
physical interpretation; the latter procedure estimates the peak response of MDF systems
directly from the earthquake response or design spectrum. The procedures are illustrated
by numerous examples, including coupled lateral-torsional response of unsymmetric-plan
buildings and torsional response of nominally symmetric buildings. The chapter ends
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with response spectrum-based procedures to consider all simultaneously acting forces that
control the design of a structural element, and to estimate the peak response of a structure
to multicomponent earthquake excitation. The modal analysis procedure is extended in
Chapter 14 to response history analysis; of nonclassically damped systems subjected to
earthquake excitation. For this purpose, we first revisit classically damped systems and re-
cast the analysis procedures of Chapters 10 and 13 in a form that facilitates their extension
to the more general case.

Chapter 15 is devoted to the practical computational issue of reducing the number
of degrees of freedom in the structural idealization required for static analysis in order
to recognize that the dynamic response of many structures can be well represented by
their first few natural vibration modes. In Chapter 16 numerical time-stepping methods
are presented for MDF systems not amenable to classical modal analysis: systems with
nonclassical damping or systems responding into the range of nonlinear behavior. Chap-
ter 17 is concerned with classical problems in the dynamics of distributed-mass systems;
only one-dimensional systems are included. In Chapter 18 two methods are presented for
discretizing one-dimensional distributed-mass systems: the Rayleigh—Ritz method and the
finite element method. The consistent mass matrix concept is introduced, and the accuracy
and convergence of the approximate natural frequencies of a cantilever beam, determined
by the finite element method, are demonstrated.

Part III of the book contains five chapters concerned with earthquake response de-
sign, and evaluation of multistory buildings, a subject not normally included in structural
dynamics texts. Several important and practical issues are addressed using analytical pro-
cedures developed in the preceding chapters. In Chapter 19 the earthquake response of
linearly elastic multistory buildings is presented for a wide range of two key parameters:
fundamental natural vibration period and beam-to-column stiffness ratio. Based on these
results, we develop an understanding of how these parameters affect the earthquake re-
sponse of buildings and, in particular, the relative response contributions of the various
natural modes, leading to practical information on the number of higher modes to include
in earthquake response calculations. Chapter 20 is concerned with the important subject of
earthquake response of multistory buildings deforming into their inelastic range. Part A of
the chapter presents rigorous nonlinear response history analysis; identifies the important
influence of modeling assumptions, key structural parameters, and ground motion details
on seismic demands; and determines the strength necessary to limit the story ductility
demands in a multistory building. Recognizing that rigorous nonlinear response history
analysis remains an onerous task, the modal pushover analysis (MPA) procedure—an ap-
proximate analysis procedure—is developed in Part B of the chapter. In this procedure,
seismic demands are estimated by nonlinear static analyses of the structure subjected to
modal inertia force distributions. Base isolation is the subject of Chapter 21. Our goal is
to study the dynamic behavior of buildings supported on base isolation systems with the
limited objective of understanding why and under what conditions isolation is effective in
reducing the earthquake-induced forces in a structure. In Chapter 22 we present the seis-
mic force provisions in four building codes—International Building Code (United States),
National Building Code of Canada, Eurocode, and Mexico Federal District Code—together
with their relationship to the theory of structural dynamics developed in Chapters 6, 7, 8,
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and 13. Subsequently, the code provisions are evaluated in light of the results of dynamic
analysis of buildings presented in Chapters 19 and 20. Performance-based guidelines and
standards for evaluating existing buildings consider inelastic behavior explicitly in esti-
mating seismic demands at low performance levels, such as life safety and collapse pre-
vention. In Chapter 23, selected aspects of the nonlinear dynamic procedure and of the
nonlinear static procedure in these documents—ATC-40, FEMA 356, and ASCE 41-06—
are presented and discussed in light of structural dynamics theory developed in Chapters 7
and 20.

A NOTE FOR INSTRUCTORS

This book is suitable for courses at the graduate level and at the senior undergraduate level.
No previous knowledge of structural dynamics is assumed. The necessary background is
available through the usual courses required of civil engineering undergraduates. These
include:

e Static analysis of structures, including statically indeterminate structures and matrix
formulation of analysis procedures (background needed primarily for Part IT)

e Structural design

e Rigid-body dynamics

o Mathematics: ordinary differential equations (for Part I), linear algebra (for Part II),
and partial differential equations (for Chapter 17 only)

By providing an elementary but thorough treatment of a large number of topics, this
book permits unusual flexibility in selection of the course content at the discretion of the
instructor. Several courses can be developed based on the material in this book. Here are a
few examples.

Almost the entire book can be covered in a one-year course:

e Title: Dynamics of Structures I (1 semester)

Syllabus: Chapter 1; Sections 1 and 2 of Chapter 2; Parts A and B of Chapter 3;
Chapter 4; selected topics from Chapter 5; Sections 1 to 7 of Chapter 6; Sections 1
to 7 of Chapter 7; selected topics from Chapter 8; Sections 1 to 4 and 9 to 11 of
Chapter 9; Parts A and B of Chapter 10; Sections 1 and 2 of Chapter 11; Parts A and
B of Chapter 12; Sections 1, 2, 7, and 8 (excluding the CQC method) of Chapter 13;
and selected topics from Part A of Chapter 22

e Title: Dynamics of Structures II (1 semester)

Syllabus: Sections 5 to 7 of Chapter 9; Sections 3 to 5 of Chapter 11; Parts C and D
of Chapter 12; Sections 3 to 11 of Chapter 13; selected parts of Chapters 14, 15, 17,
19 to 21, and 23; and Appendix A.



A Note for Instructors XXix

The selection of topics for the first course has been dictated in part by the need to provide
comprehensive coverage, including dynamic and earthquake analysis of MDF systems, for
students taking only one course.

Abbreviated versions of the outline above can be organized for two quarter courses.
One possibility is as follows:

e Title: Dynamics of Structures I (1 quarter)

Syllabus: Chapter 1; Sections 1 and 2 of Chapter 2; Sections 1 to 4 of Chapter 3;
Sections 1 and 2 of Chapter 4; selected topics from Chapter 5; Sections 1 to 7 of
Chapter 6; Sections 1 to 7 of Chapter 7; selected topics from Chapter 8; Sections 1
to 4 and 9 to 11 of Chapter 9; Parts A and B of Chapter 10; Part B of Chapter 12;
Sections 1, 2, 7, and 8 (excluding the CQC method) of Chapter 13.

e Title: Dynamics of Structures II (1 quarter)

Syllabus: Sections 5 to 7 of Chapter 9; Sections 3 to 9 of Chapter 13; and selected
topics from Chapters 19 to 23

A one-semester course emphasizing earthquake engineering can be organized as
follows:

e Title: Earthquake Dynamics of Structures

Syllabus: Chapter 1; Sections 1 and 2 of Chapter 2; Sections 1 and 2 of Chapter 4;
Chapters 6 and 7; selected topics from Chapter 8; Sections 1 to 4 and 9 to 11 of
Chapter 9; Parts A and B of Chapter 10; Part A of Chapter 11; Sections 1 to 3 and
7 to 11 of Chapter 13; and selected topics from Chapters 19 to 23.

Solving problems is essential for students to learn structural dynamics. For this
purpose the first 18 chapters include 373 problems. Chapters 19 through 23 do not include
problems, for two reasons: (1) no new dynamic analysis procedures are introduced in these
chapters; (2) this material does not lend itself to short, meaningful problems. However, the
reader will find it instructive to work through the examples presented in Chapters 19 to 23
and to reproduce the results. The computer is essential for solving some of the problems,
and these have been identified. In solving these problems, it is assumed that the student
will have access to computer programs such as MATLAB or MATHCAD. Solutions to
these problems are available to instructors as a download from the publisher.

In my lectures at Berkeley, I develop the theory on the blackboard and illustrate it
by transparencies of the more complex figures in the book; enlarged versions of many
of the figures, which are suitable for making transparencies for use in the classroom, are
available to instructors as a download from the publisher. Despite requests for a complete
set of PowerPoint slides, they have not been developed because I do not think this approach
is the most effective strategy for teaching dynamics of structures.
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A NOTE FOR PROFESSIONAL ENGINEERS

Many professional engineers encouraged me during 1980s to prepare a book more com-
prehensive than Dynamics of Structures, A Primer, a monograph published in 1981 by the
Earthquake Engineering Research Institute. This need, I hope, is filled by the present book.
Having been conceived as a textbook, it includes the formalism and detail necessary for
students, but these features should not deter the professional from using the book, because
its philosophy and style are aimed to facilitate learning the subject by self-study.

For professional engineers interested in earthquake analysis, response, design, and
evaluation of structures, I suggest the following reading path through the book: Chapters 1
and 2; Chapters 6 to 9; Parts A and B of Chapter 10; Part A of Chapter 11; and Chapters 13
and 19 to 23.

REFERENCES
In this introductory text it is impractical to acknowledge sources for the information pre-
sented. References have been omitted to avoid distracting the reader. However, I have

included occasional comments to add historical perspective and, at the end of almost every
chapter, a brief list of publications suitable for further reading.

YOUR COMMENTS ARE INVITED

I request that instructors, students, and professional engineers write to me (chopra@ce.
berkeley.edu) if they have suggestions for improvements or clarifications, or if they identify
errors. I thank you in advance for taking the time and interest to do so.

Anil K. Chopra
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Equations of Motion, Problem
Statement, and Solution Methods

PREVIEW

In this opening chapter, the structural dynamics problem is formulated for simple struc-
tures that can be idealized as a system with a lumped mass and a massless supporting
structure. Linearly elastic structures as well as inelastic structures subjected to applied
dynamic force or earthquake-induced ground motion are considered. Then four methods
for solving the differential equation governing the motion of the structure are reviewed
briefly. The chapter ends with an overview of how our study of the dynamic response of
single-degree-of-freedom systems is organized in the chapters to follow.

1.1 SIMPLE STRUCTURES

We begin our study of structural dynamics with simple structures, such as the pergola
shown in Fig. 1.1.1 and the elevated water tank of Fig. 1.1.2. We are interested in under-
standing the vibration of these structures when subjected to a lateral (or horizontal) force
at the top or horizontal ground motion due to an earthquake.

We call these structures simple because they can be idealized as a concentrated or
lumped mass m supported by a massless structure with stiffness k in the lateral direction.
Such an idealization is appropriate for this pergola with a heavy concrete roof supported
by light-steel-pipe columns, which can be assumed as massless. The concrete roof is very
stiff and the flexibility of the structure in lateral (or horizontal) motion is provided entirely
by the columns. The idealized system is shown in Fig. 1.1.3a with a pair of columns
supporting the tributary length of the concrete roof. This system has a lumped mass m

3
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Figure 1.1.1 This pergola at the Macuto-Sheraton Hotel near Caracas, Venezuela, was
damaged by earthquake on July 29, 1967. The Magnitude 6.5 event, which was centered
about 15 miles from the hotel, overstrained the steel pipe columns, resulting in a permanent
roof displacement of 9 in. (From the Steinbrugge Collection, National Information Service
for Earthquake Engineering, University of California, Berkeley.)

equal to the mass of the roof shown, and its lateral stiffness k is equal to the sum of the
stiffnesses of individual pipe columns. A similar idealization, shown in Fig. 1.1.3b, is
appropriate for the tank when it is full of water. With sloshing of water not possible in a
full tank, it is a lumped mass m supported by a relatively light tower that can be assumed
as massless. The cantilever tower supporting the water tank provides lateral stiffness k to
the structure. For the moment we will assume that the lateral motion of these structures is
small in the sense that the supporting structures deform within their linear elastic limit.

We shall see later in this chapter that the differential equation governing the lateral
displacement u(¢) of these idealized structures without any external excitation—applied
force or ground motion—is

mii + ku =0 (1.1.1)

where an overdot denotes differentiation with respect to time; thus # denotes the velocity of
the mass and i its acceleration. The solution of this equation, presented in Chapter 2, will
show that if the mass of the idealized systems of Fig. 1.1.3 is displaced through some initial
displacement u(0), then released and permitted to vibrate freely, the structure will oscillate
or vibrate back and forth about its initial equilibrium position. As shown in Fig. 1.1.3c, the
same maximum displacement occurs oscillation after oscillation; these oscillations con-
tinue forever and these idealized systems would never come to rest. This is unrealistic,
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Figure 1.1.2 This reinforced-concrete
tank on a 40-ft-tall single concrete column,
located near the Valdivia Airport, was
undamaged by the Chilean earthquakes
of May 1960. When the tank is full of
water, the structure can be analyzed as a
single-degree-of freedom system. (From
the Steinbrugge Collection, National
Information Service for Earthquake
Engineering, University of California,
Berkeley.)

of course. Intuition suggests that if the roof of the pergola or the top of the water tank were
pulled laterally by a rope and the rope were suddenly cut, the structure would oscillate with
ever-decreasing amplitude and eventually come to rest. Such experiments were performed
on laboratory models of one-story frames, and measured records of their free vibration

Rigid slab

Tributary

]ength —= U m u M(O) u
Massless k
columns Massless
tower
4 4 7.
(2) (b) ©

Figure 1.1.3 (a) Idealized pergola; (b) idealized water tank; (c) free vibration due to
initial displacement.

Time ¢t
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response are presented in Fig. 1.1.4. As expected, the motion of these model structures
decays with time, with the decay being more rapid for the plexiglass model relative to the
aluminum frame.

(a)

Figure 1.1.4 (a) Aluminum and plexiglass model
frames mounted on a small shaking table used

for classroom demonstration at the University of
California at Berkeley (courtesy of T. Merport); (b)
free vibration record of aluminum model; (c) free
vibration record of plexiglass model.
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The process by which vibration steadily diminishes in amplitude is called damping.
The kinetic energy and strain energy of the vibrating system are dissipated by various
damping mechanisms that we shall mention later. For the moment, we simply recognize
that an energy-dissipating mechanism should be included in the structural idealization in
order to incorporate the feature of decaying motion observed during free vibration tests
of a structure. The most commonly used damping element is the viscous damper, in part
because it is the simplest to deal with mathematically. In Chapters 2 and 3 we introduce
other energy-dissipating mechanisms.

1.2 SINGLE-DEGREE-OF-FREEDOM SYSTEM

The system considered is shown schematically in Fig. 1.2.1. It consists of a mass m con-
centrated at the roof level, a massless frame that provides stiffness to the system, and a
viscous damper (also known as a dashpot) that dissipates vibrational energy of the system.
The beam and columns are assumed to be inextensible axially.

This system may be considered as an idealization of a one-story structure. Each
structural member (beam, column, wall, etc.) of the actual structure contributes to the
inertial (mass), elastic (stiffness or flexibility), and energy dissipation (damping) properties
of the structure. In the idealized system, however, each of these properties is concentrated
in three separate, pure components: mass component, stiffness component, and damping
component.

The number of independent displacements required to define the displaced posi-
tions of all the masses relative to their original position is called the number of degrees
of freedom (DOFs) for dynamic analysis. More DOFs are typically necessary to define
the stiffness properties of a structure compared to the DOFs necessary for representing
inertial properties. Consider the one-story frame of Fig. 1.2.1, constrained to move only
in the direction of the excitation. The static analysis problem has to be formulated with
three DOFs—Ilateral displacement and two joint rotations—to determine the lateral stiff-
ness of the frame (see Section 1.3). In contrast, the structure has only one DOF—Ilateral
displacement—for dynamic analysis if it is idealized with mass concentrated at one loca-
tion, typically the roof level. Thus we call this a single-degree-of-freedom (SDF) system.

t
u }_A‘j u
Mass u

p()
Massless Viscous
frame damper
", / 7
@ (b) P g

Figure 1.2.1 Single-degree-of-freedom system: (a) applied force p(z); (b) earthquake-
induced ground motion.
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Two types of dynamic excitation will be considered: (1) external force p(¢) in the lat-
eral direction (Fig. 1.2.1a), and (2) earthquake-induced ground motion u,(¢) (Fig. 1.2.1b).
In both cases u denotes the relative displacement between the mass and the base of the
structure.

1.3 FORCE-DISPLACEMENT RELATION

Consider the system shown in Fig. 1.3.1a with no dynamic excitation subjected to an ex-
ternally applied static force fs along the DOF u as shown. The internal force resisting the
displacement u is equal and opposite to the external force fs (Fig. 1.3.1b). It is desired
to determine the relationship between the force fs and the relative displacement u associ-
ated with deformations in the structure during oscillatory motion. This force—displacement
relation would be linear at small deformations but would become nonlinear at larger de-
formations (Fig. 1.3.1c); both nonlinear and linear relations are considered (Fig. 1.3.1c
and d).

To determine the relationship between fs and u is a standard problem in static struc-
tural analysis, and we assume that the reader is familiar with such analyses. Thus the
presentation here is brief and limited to those aspects that are essential.

u
}_‘>¢ External force
f N | | > . N
f: S
Resisting force
7,
(a) (b)
f S A k f S A
1
a k
1
L > U > U
uﬂ
c
©) ()]

Figure 1.3.1



Sec. 1.3 Force—Displacement Relation 9
1.3.1 Linearly Elastic Systems

For a linear system the relationship between the lateral force fg and resulting deformation
u is linear, that is,

Jfs =ku (1.3.1)

where k is the lateral stiffness of the system; its units are force/length. Implicitin Eq. (1.3.1)
is the assumption that the linear fs—u relationship determined for small deformations of
the structure is also valid for larger deformations. This linear relationship implies that fy
is a single-valued function of u (i.e., the loading and unloading curves are identical). Such
a system is said to be elastic; hence we use the term linearly elastic system to emphasize
both properties.

Consider the frame of Fig. 1.3.2a with bay width L, height A, elastic modulus E,
and second moment of the cross-sectional area (or moment of inertia)’ about the axis of
bending = [, and /. for the beam and columns, respectively; the columns are clamped
(or fixed) at the base. The lateral stiffness of the frame can readily be determined for two
extreme cases: If the beam is rigid [i.e., flexural rigidity E I, = oo (Fig. 1.3.2b)],

12E1, EIL
k= 2: - =M7F (13.2)

columns

On the other hand, for a beam with no stiffness [i.e., EI, = 0 (Fig. 1.3.2¢)],

3EI, _ EI
k=), —5- =67 (13.3)

columns

Observe that for the two extreme values of beam stiffness, the lateral stiffness of the frame
is independent of L, the beam length or bay width.

The lateral stiffness of the frame with an intermediate, realistic stiffness of the beam
can be calculated by standard procedures of static structural analysis. The stiffness ma-
trix of the frame is formulated with respect to three DOFs: the lateral displacement u

u u
= =
El, = o ElL=0
s L >~ fs L s
y y 7. Z
(b) ©
Figure 1.3.2

TIn this book the preferred term for I is second moment of area instead of the commonly used moment of
inertia; the latter will be reserved for defining inertial effects associated with the rotational motion of rigid bodies.
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and the rotations of the two beam—column joints (Fig. 1.3.2a). By static condensation or
elimination of the rotational DOFs, the lateral force—displacement relation of Eq. (1.3.1) is
determined. Applying this procedure to a frame with L = 2h and EI, = El,, its lateral
stiffness is obtained (see Example 1.1):

9 EI.
k=——
7 W
The lateral stiffness of the frame can be computed similarly for any values of I,
1., L, and h using the stiffness coefficients for a uniform flexural element presented in

Appendix 1. If shear deformations in elements are neglected, the result can be written in
the form

(1.3.4)

24E1,. 12 1
it (13.5)

h 12p+4
where p = (E /L) + (2E1./h) is the beam-to-column stiffness ratio (to be elaborated in
Section 18.1.1). For p = 0, oo, and 1 Eq. (1.3.5) reduces to the results of Egs. (1.3.3),
(1.3.2), and (1.3.4), respectively. The lateral stiffness is plotted as a function of p in

Fig. 1.3.3; it increases by a factor of 4 as p increases from zero to infinity.

24
2 i
@':’ i
~
2 6 -
10 103 102 107! 10° 10! 10?

P
Figure 1.3.3 Variation of lateral stiffness, k, with beam-to-column stiffness ratio, p.

Example 1.1

Calculate the lateral stiffness for the frame shown in Fig. E1.1a, assuming the elements to be
axially rigid.

k22:4EIC/h+4EIb/L

ky = 6EI. | h* ks, = 6EIL./ h? ks =2EIl, /L

a
™ _2(12E1)
| B B

3
M1=1 h

(®) (c)

Figure E1.1
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Solution This structure can be analyzed by any of the standard methods, including moment
distribution. Here we use the definition of stiffness influence coefficients to solve the problem.

The system has the three DOFs shown in Fig. E1.1a. To obtain the first column of the
3 x 3 stiffness matrix, we impose unit displacement in DOF u, with u» = u3 = 0. The forces
ki1 required to maintain this deflected shape are shown in Fig. E1.1b. These are determined
using the stiffness coefficients for a uniform flexural element presented in Appendix 1. The
elements k;; in the second column of the stiffness matrix are determined by imposing uy = 1
with u; = uz = 0; see Fig. El.1c. Similarly, the elements k;3 in the third column of the
stiffness matrix can be determined by imposing displacements u3 = 1 with u; = up = 0.
Thus the 3 x 3 stiffness matrix of the structure is known and the equilibrium equations can be
written. For a frame with I, = I, subjected to lateral force fs, they are

24 6h 6h uj fs
El. 2 2 _

6h  6h h up ¢ =43 0 (a)
h3 2 2

6h h 6h us 0

From the second and third equations, the joint rotations can be expressed in terms of lateral
displacement as follows:

uy| _ [6h? hZ]—' [6h] _ 6 [1]
et ==1"% a2l Lo]m=—5l1]n ®)

Substituting Eq. (b) into the first of three equations in Eq. (a) gives

24E1. EI. 6 1 9 El,
fs= (Tt = Sraon om || ])u =2 ©
Thus the lateral stiffness of the frame is
96 E1

=T @

This procedure to eliminate joint rotations, known as the static condensation method, is
presented in textbooks on static analysis of structures. We return to this topic in Chapter 9.

1.3.2 Inelastic Systems

Determined by experiments, the force—deformation relation for a structural steel compo-
nent undergoing cyclic deformations expected during earthquakes is shown in Fig. 1.3.4.
The initial loading curve is nonlinear at the larger amplitudes of deformation, and the un-
loading and reloading curves differ from the initial loading branch; such a system is said
to be inelastic. This implies that the force—deformation relation is path dependent, i.e., it
depends on whether the deformation is increasing or decreasing. Thus the resisting force
is an implicit function of deformation:

fs = fs(u) (1.3.6)

The force—deformation relation for the idealized one-story frame (Fig. 1.3.1a) deforming
into the inelastic range can be determined in one of two ways. One approach is to use
methods of nonlinear static structural analysis. For example, in analyzing a steel structure
with an assumed stress—strain law, the analysis keeps track of the initiation and spreading
of yielding at critical locations and formation of plastic hinges to obtain the initial loading
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Figure 1.3.4 Force—deformation relation for a structural steel component. (From
H. Krawinkler, V. V. Bertero, and E. P. Popov, “Inelastic Behavior of Steel Beam-to-
Column Subassemblages,” Report No. EERC 71-7, University of California, Berkeley,
1971.)

curve (0—a) shown in Fig. 1.3.1c. The unloading (a—c) and reloading (c—a) curves can be
computed similarly or can be defined from the initial loading curve using existing hypothe-
ses. Another approach is to define the inelastic force—deformation relation as an idealized
version of the experimental data, such as in Fig. 1.3.4.

We are interested in studying the dynamic response of inelastic systems because
many structures are designed with the expectation that they will undergo some cracking,
yielding, and damage during intense ground shaking caused by earthquakes.

1.4 DAMPING FORCE

As mentioned earlier, the process by which free vibration steadily diminishes in amplitude
is called damping. In damping, the energy of the vibrating system is dissipated by various
mechanisms, and often more than one mechanism may be present at the same time. In
simple “clean” systems such as the laboratory models of Fig. 1.1.4, most of the energy
dissipation presumably arises from the thermal effect of repeated elastic straining of the
material and from the internal friction when a solid is deformed. In actual structures,
however, many other mechanisms also contribute to the energy dissipation. In a vibrating
building these include friction at steel connections, opening and closing of microcracks
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in concrete, and friction between the structure itself and nonstructural elements such as
partition walls. It seems impossible to identify or describe mathematically each of these
energy-dissipating mechanisms in an actual building.

As a result, the damping in actual structures is usually represented in a highly ideal-
ized manner. For many purposes the actual damping in a SDF structure can be idealized
satisfactorily by a linear viscous damper or dashpot. The damping coefficient is selected
so that the vibrational energy it dissipates is equivalent to the energy dissipated in all the
damping mechanisms, combined, present in the actual structure. This idealization is there-
fore called equivalent viscous damping, a concept developed further in Chapter 3.

Figure 1.4.1a shows a linear viscous damper subjected to a force f along the DOF u.
The internal force in the damper is equal and opposite to the external force fp (Fig. 1.4.1b).
As shown in Fig. 1.4.1c, the damping force f) is related to the velocity u« across the linear
viscous damper by

fp=ci (1.4.1)

where the constant c is the viscous damping coefficient; it has units of force x time/length.

Unlike the stiffness of a structure, the damping coefficient cannot be calculated from
the dimensions of the structure and the sizes of the structural elements. This should not
be surprising because, as we noted earlier, it is not feasible to identify all the mechanisms
that dissipate vibrational energy of actual structures. Thus vibration experiments on actual
structures provide the data for evaluating the damping coefficient. These may be free
vibration experiments that lead to data such as those shown in Fig. 1.1.4; the measured rate
at which motion decays in free vibration will provide a basis for evaluating the damping
coefficient, as we shall see in Chapter 2. The damping property may also be determined
from forced vibration experiments, a topic that we study in Chapter 3.

The equivalent viscous damper is intended to model the energy dissipation at defor-
mation amplitudes within the linear elastic limit of the overall structure. Over this range of
deformations, the damping coefficient ¢ determined from experiments may vary with the
deformation amplitude. This nonlinearity of the damping property is usually not consid-
ered explicitly in dynamic analyses. It may be handled indirectly by selecting a value for
the damping coefficient that is appropriate for the expected deformation amplitude, usually
taken as the deformation associated with the linearly elastic limit of the structure.

u Ioy

= External force f
------------- fo e fp
I / o ‘: I ! /
’ Resisting force -

(a) (b)

©

Figure 1.4.1
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Additional energy is dissipated due to inelastic behavior of the structure at larger
deformations. Under cyclic forces or deformations, this behavior implies formation of a
force—deformation hysteresis loop (Fig. 1.3.1c). The damping energy dissipated during
one deformation cycle between deformation limits =+ u, is given by the area within the
hysteresis loop abcda (Fig. 1.3.1c). This energy dissipation is usually not modeled by a
viscous damper, especially if the excitation is earthquake ground motion, for reasons we
note in Chapter 7. Instead, the most common, direct, and accurate approach to account for
the energy dissipation through inelastic behavior is to recognize the inelastic relationship
between resisting force and deformation, such as shown in Figs. 1.3.1c and 1.3.4, in solving
the equation of motion (Chapter 5). Such force—deformation relationships are obtained
from experiments on structures or structural components at slow rates of deformation, thus
excluding any energy dissipation arising from rate-dependent effects. The usual approach
is to model this damping in the inelastic range of deformations by the same viscous damper
that was defined earlier for smaller deformations within the linearly elastic range.

1.5 EQUATION OF MOTION: EXTERNAL FORCE

Figure 1.5.1a shows the idealized one-story frame introduced earlier subjected to an exter-
nally applied dynamic force p(¢) in the direction of the DOF u. This notation indicates
that the force p varies with time . The resulting displacement of the mass also varies with
time; it is denoted by u(¢). In Sections 1.5.1 and 1.5.2 we derive the differential equation
governing the displacement u(¢) by two methods using (1) Newton’s second law of motion,
and (2) dynamic equilibrium. An alternative point of view for the derivation is presented
in Section 1.5.3.

1.5.1 Using Newton’s Second Law of Motion

The forces acting on the mass at some instant of time are shown in Fig. 1.5.1b. These
include the external force p(t), the elastic (or inelastic) resisting force fs (Fig. 1.3.1), and
the damping resisting force fp (Fig. 1.4.1). The external force is taken to be positive in
the direction of the x-axis, and the displacement u (), velocity u(¢), and acceleration i (¢)
are also positive in the direction of the x-axis. The elastic and damping forces are shown

m p() fi -- p()
- \ : fs = \
fo << fo <<
(a) (b) (c)

Figure 1.5.1
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acting in the opposite direction because they are internal forces that resist the deformation
and velocity, respectively.

The resultant force along the x-axis is p — fs — fp, and Newton’s second law of
motion gives

p—fs— fp=mii or mi+ fp+ fs=pQ) (1.5.1)
This equation after substituting Egs. (1.3.1) and (1.4.1) becomes
mii + cu + ku = p(t) (1.5.2)

This is the equation of motion governing the deformation or displacement u(¢) of the
idealized structure of Fig. 1.5.1a, assumed to be linearly elastic, subjected to an external
dynamic force p(t). The units of mass are force/acceleration.

This derivation can readily be extended to inelastic systems. Equation (1.5.1) is
still valid and all that needs to be done is to replace Eq. (1.3.1), restricted to linear systems,
by Eq. (1.3.6), valid for inelastic systems. For such systems, therefore, the equation of
motion is

mii + cui + fs(u) = p(t) (1.5.3)
1.5.2 Dynamic Equilibrium

Having been trained to think in terms of equilibrium of forces, structural engineers may
find D’ Alembert’s principle of dynamic equilibrium particularly appealing. This principle
is based on the notion of a fictitious inertia force, a force equal to the product of mass
times its acceleration and acting in a direction opposite to the acceleration. It states that
with inertia forces included, a system is in equilibrium at each time instant. Thus a free-
body diagram of a moving mass can be drawn, and principles of statics can be used to
develop the equation of motion.

Figure 1.5.1c is the free-body diagram at time 7 with the mass replaced by its inertia
force, which is shown by a dashed line to distinguish this fictitious force from the real
forces. Setting the sum of all the forces equal to zero gives Eq. (1.5.1b), which was
derived earlier by using Newton’s second law of motion.

1.5.3 Stiffness, Damping, and Mass Components

In this section the governing equation for the idealized one-story frame is formulated based
on an alternative viewpoint. Under the action of external force p(t), the state of the system
is described by displacement u(z), velocity u(z), and acceleration i (t); see Fig. 1.5.2a.
Now visualize the system as the combination of three pure components: (1) the stiffness
component: the frame without damping or mass (Fig. 1.5.2b); (2) the damping component:
the frame with its damping property but no stiffness or mass (Fig. 1.5.2¢); and (3) the mass
component: the roof mass without the stiffness or damping of the frame (Fig. 1.5.2d).

TTwo or more equations in the same line with the same equation number will be referred to as equations a,
b, ¢, etc., from left to right.



) 4

16 Equations of Motion, Problem Statement, and Solution Methods Chap. 1

40) /o fi
1 | | |
= + ! I + ! I
I I
Z Z 7 77 7.
Displacement u Displacement u Velocity u Acceleration i
Velocity u
Acceleration i
(a) (b) (© (d)

30

Figure 1.5.2 (a) System; (b) stiffness component; (c) damping component; (d) mass component.

The external force fs on the stiffness component is related to the displacement u by
Eq. (1.3.1) if the system is linearly elastic, the external force f, on the damping com-
ponent is related to the velocity u# by Eq. (1.4.1), and the external force f; on the mass
component is related to the acceleration by f; = mii. The external force p(¢) applied
to the complete system may therefore be visualized as distributed among the three com-
ponents of the structure, and fs + fp + f; must equal the applied force p(¢) leading to
Eq. (1.5.1b). Although this alternative viewpoint may seem unnecessary for the simple
system of Fig. 1.5.2a, it is useful for complex systems (Chapter 9).

Example 1.2

A small one-story industrial building, 20 by 30 ft in plan, is shown in Fig. E1.2 with
moment frames in the north—south direction and braced frames in the east—west direction.
The weight of the structure can be idealized as 30 Ib/ft> lumped at the roof level. The hor-
izontal cross bracing is at the bottom chord of the roof trusses. All columns are W8 x 24
sections; their second moments of cross-sectional area about the x and y axes are [, =
82.8 in* and I, = 183 in4, respectively; for steel, E = 29,000 ksi. The vertical cross-
bracings are made of 1-in.-diameter rods. Formulate the equation governing free vibration in
(a) the north—south direction and (b) the east-west direction.

Horizontal bracing

1 1
y Roof truss B,rearct;ﬁagl
x|y
&
200 30 20
T %
() (b) © (@

Figure E1.2 (a) Plan; (b) east and west elevations; (c) north and south elevations; (d) cross brace.
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Solution The mass lumped at the roof is
w30 x30x 20
nm= ——=————

g 386

Because of the horizontal cross-bracing, the roof can be treated as a rigid diaphragm.

= 46.63 Ib-sec/in. = 0.04663 kip-sec2/in.

(a) North—south direction. Because of the roof truss, each column behaves as a
clamped—clamped column and the lateral stiffness of the two moment frames (Fig. E1.2b)
is

12E1 12(29 x 10%)(82.8
ks :4( x) _ 41229} T0VBL8) g 5 kips/in.

h3 (12 x 12)3
and the equation of motion is
mii + (kn-s)u =0 (a)

(b) East—west direction. ~ Braced frames, such as those shown in Fig. E1.2¢, are usu-
ally designed as two superimposed systems: an ordinary rigid frame that supports vertical
(dead and live) loads, plus a vertical bracing system, generally regarded as a pin-connected
truss that resists lateral forces. Thus the lateral stiffness of a braced frame can be estimated as
the sum of the lateral stiffnesses of individual braces. The stiffness of a brace (Fig. E1.2d) is
kbrace = (AE/L) cos? 6. This can be derived as follows.

We start with the axial force—deformation relation for a brace:

AE

p= T5 (b)

By statics fs = pcos#, and by kinematics u = §/cosf. Substituting p = fg/cosé and
8 = ucos# in Eq. (b) gives

AE
fs = koracelt kbrace = I cos? 0 ©)
For the brace in Fig. E1.2¢, cos® = 20/4/122 +202 = 0.8575, A = 0.785 in?,
L = 23.3 ft, and
0.785(29 x 10°) ) o
kprace = ——=—————(0.8575) = 59.8 kips/in.

233 x 12

Although each frame has two cross-braces, only the one in tension will provide lateral resis-
tance; the one in compression will buckle at small axial force and will contribute little to the
lateral stiffness. Considering the two frames,

kg-w = 2 x 59.8 = 119.6 kips/in.
and the equation of motion is
mii + (kp-w)u =0 (d)
Observe that the error in neglecting the stiffness of columns is small: keq = 2 x 12E1, /h3 =
4.26 kips/in. versus kprace = 59.8 kips/in.
Example 1.3

A 375-ft-long concrete, box-girder bridge on four supports—two abutments and two sym-
metrically located bents—is shown in Fig. E1.3. The cross-sectional area of the bridge deck
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Figure E1.3
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is 123 ft2. The weight of the bridge is idealized as lumped at the deck level; the unit weight of
concrete is 150 Ib/ft>. The weight of the bents may be neglected. Each bent consists of three
25-ft-tall columns of circular cross section with Iy, = I, = 13 ft* (Fig. E1.3b). Formulate the
equation of motion governing free vibration in the longitudinal direction. The elastic modulus
of concrete is £ = 3000 ksi.

Solution The weight per unit length lumped at the deck level is (123 x1)150 = 18.45 kips/ft.
The total weight lumped at the deck level is

w = 18.45 x 375 = 6919 kips

and the corresponding mass is

6919
m="2 =227 _ 2149 kip-sec/ft
g 322
The longitudinal stiffness of the bridge is computed assuming the bridge deck to displace
rigidly as shown in Fig. E1.3c. Each column of a bent behaves as a clamped—clamped column.
The longitudinal stiffness provided by each bent is

12EL 12(3000 x 144)13
kpent = 3 ( : ) =3 [L} — 12,940 kips/ft

h3 (25)3

Two bents provide a total stiffness of
k =2 X kpent = 2 x 12,940 = 25,880 kips/ft
The equation governing the longitudinal displacement u is

mii + ku =0

1.6 MASS-SPRING-DAMPER SYSTEM

We have introduced the SDF system by idealizing a one-story structure (Fig. 1.5.1a), an
approach that should appeal to structural engineering students. However, the classic SDF
system is the mass—spring—damper system of Fig. 1.6.1a. The dynamics of this system is
developed in textbooks on mechanical vibration and elementary physics. If we consider
the spring and damper to be massless, the mass to be rigid, and all motion to be in the
direction of the x-axis, we have an SDF system. Figure 1.6.1b shows the forces acting
on the mass; these include the elastic resisting force, fs = ku, exerted by a linear spring
of stiffness k, and the damping resisting force, fp = cu, due to a linear viscous damper.
Newton’s second law of motion then gives Eq. (1.5.1b). Alternatively, the same equation
is obtained using D’ Alembert’s principle and writing an equilibrium equation for forces in
the free-body diagram, including the inertia force (Fig. 1.6.1c). It is clear that the equation
of motion derived earlier for the idealized one-story frame of Fig. 1.5.1a is also valid for
the mass—spring—damper system of Fig. 1.6.1a.
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Figure 1.6.1 Mass—spring—damper system.

Example 1.4

Derive the equation of motion of the weight w suspended from a spring at the free end of the
cantilever steel beam shown in Fig. E1.4a. For steel, E = 29,000 ksi. Neglect the mass of the
beam and spring.

L=10

—e—

2” diameter

NN\ NN\

J:h

k =20 Ib/in. s
w=mg — Undeformed position
I— Static equilibrium
p(®) . £ s
mit
p()
w
(@) (b) © ()

Figure E1.4 (a) System; (b) undeformed, deformed, and static equilibrium positions;
(c) free-body diagram; (d) spring and beam forces.

Solution Figure E1.4b shows the deformed position of the free end of the beam, spring, and
mass. The displacement of the mass u is measured from its initial position with the beam
and spring in their original undeformed configuration. Equilibrium of the forces of Fig. E1.4c
gives

mii + fs = w + p(t) (a)
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where

fs = kel (b)
and the effective stiffness k. of the system remains to be determined. The equation of motion
is

mit + keit = w + p(t) (©)
The displacement & can be expressed as
=68q+u (d)

where &g is the static displacement due to weight w and u is measured from the position of
static equilibrium. Substituting Eq. (d) in Eq. (a) and noting that (1) u = i because s does
not vary with time, and (2) k.85 = w gives

mii + keu = p(t) (e)

Observe that this is the same as Eq. (1.5.2) with ¢ = 0 for a spring—mass system oriented in
the horizontal direction (Fig. 1.6.1). Also note that the equation of motion (e) governing u,
measured from the static equilibrium position, is unaffected by gravity forces.

For this reason we usually formulate a dynamic analysis problem for a linear system
with its static equilibrium position as the reference position. The displacement u(¢) and as-
sociated internal forces in the system will represent the dynamic response of the system. The
total displacements and forces are obtained by adding the corresponding static quantities to
the dynamic response.

The effective stiffness k. remains to be determined. It relates the static force fg to the
resulting displacement u by

f s = ket ()
where
U = Uspring + Ubeam (2
where Ipeam is the deflection of the right end of the beam and Upying is the deformation in the
spring. With reference to Fig. E1.4d,
fS = kﬁspring = kbeamUbeam (h)
In Eq. (g), substitute for u from Eq. (f) and the uspring and Upeam from Eq. (h) to obtain
f S f S f S kkbeam .
Is_fs or k, = —Nbeam Q)
ke k kbeam k + kbeam
Now k = 20 Ib/in. and

3EI 3(29 x 109)[ (1)*/4]
L3 (10 x 12)3
Substituting for k and kpeam in Eq. (i) gives

Kkbeam = =39.54 Ib/in.

ke = 13.39 1b/in.

As mentioned earlier, the gravity forces can be omitted from the formulation of the
governing equation for the system of Fig. E1.4 provided that the displacement u is measured
from the static equilibrium position. However, the gravity loads must be considered if they act
as either restoring forces (Example 1.5) or as destabilizing forces (Example 1.6).
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Example 1.5

Derive the equation governing the free motion of a simple pendulum (Fig. E1.5a), which
consists of a point mass m suspended by a light string of length L.

mg Figure E1.5 (a) Simple pendulum;
(b) (b) free-body diagram.

Solution Figure E1.5a shows the displaced position of the pendulum defined by the angle 6
measured from the vertical position, and Fig. E1.5b shows the free-body diagram of the mass.
The forces acting are the weight mg, tension 7 in the string, and D’ Alembert’s fictitious inertia
force f; = mL6.

Equilibrium of the moments of forces about O gives

mLzé—f—mgLsinG =0 (a)
This is a nonlinear differential equation governing 6.
For small rotations, sin 6 >~ 6 and the equation of motion [Eq. (a)] can be rewritten as
i, 8
64+ =60=0 b
+7 (b)
Example 1.6

The system of Fig. E1.6 consists of a weight w attached to a rigid massless bar of length
L joined to its support by a rotational spring of stiffness k. Derive the equation of motion.
Neglect rotational inertia and assume small deflections. What is the buckling weight?

fi
\y\

(a) (b) Figure E1.6

Solution Figure E1.6b shows the displaced position of the system defined by the angle 6
measured from the vertical position and the free-body diagram, which includes the weight w,
the spring force (moment) fs = k6, and D’ Alembert’s fictitious inertia force f; = (w/g)L0.
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Equilibrium of the moments about O gives
fiL+ fs =mgLsin6
or
W, .
— L0 + kO = wLsinf (a)
g
For small rotations sin# >~ 6 and Eq. (a) can be rewritten as
PI% 4 (k—wL)p =0 (b)
g

Observe that the gravity load reduces the effective stiffness of the system. If the weight
w = k/L, the effective stiffness is zero and the system becomes unstable under its own weight.
Thus, the buckling load (or weight) is

Wer =

k (
z ©)

1.7 EQUATION OF MOTION: EARTHQUAKE EXCITATION

In earthquake-prone regions, the principal problem of structural dynamics that concerns
structural engineers is the behavior of structures subjected to earthquake-induced motion
of the base of the structure. The displacement of the ground is denoted by u,, the total (or
absolute) displacement of the mass by u’, and the relative displacement between the mass
and ground by u (Fig. 1.7.1). At each instant of time these displacements are related by

W' (6) = ug (1) + u(t) (1.7.1)

Both u" and u, refer to the same inertial frame of reference and their positive directions
coincide.

The equation of motion for the idealized one-story system of Fig. 1.7.1a subjected to
earthquake excitation can be derived by any one of the approaches introduced in Section
1.5. Here we choose to use the concept of dynamic equilibrium. From the free-body
diagram including the inertia force f;, shown in Fig. 1.7.1b, the equation of dynamic
equilibrium is

fi+fo+fs=0 (1.7.2)
}ij”t
u f[<—
| O—
Js =
Jp <~

(@) = g () Figure 1.7.1
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Only the relative motion u between the mass and the base due to structural deformation
produces elastic and damping forces (i.e., the rigid-body component of the displacement
of the structure produces no internal forces). Thus for a linear system, Eqs. (1.3.1) and
(1.4.1) are still valid. The inertia force f; is related to the acceleration i’ of the mass by

fr = mii' (1.7.3)
Substituting Eqgs. (1.3.1), (1.4.1), and (1.7.3) in Eq. (1.7.2) and using Eq. (1.7.1) gives
mii + cu + ku = —miig(t) (1.7.4)

This is the equation of motion governing the relative displacement or deformation u(#) of
the linearly elastic structure of Fig. 1.7.1a subjected to ground acceleration iiy(t).

For inelastic systems, Eq. (1.7.2) is valid, but Eq. (1.3.1) should be replaced by
Eq. (1.3.6). The resulting equation of motion is

mii + cu + fs(u) = —miigy () (1.7.5)

Comparison of Egs. (1.5.2) and (1.7.4), or of Egs. (1.5.3) and (1.7.5), shows that
the equations of motion for the structure subjected to two separate excitations—ground
acceleration i, () and external force = —mii, (t)—are one and the same. Thus the relative
displacement or deformation u(t) of the structure due to ground acceleration i, (¢) will be
identical to the displacement u(¢) of the structure if its base were stationary and if it were

subjected to an external force = —miiy(¢). As shown in Fig. 1.7.2, the ground motion can
therefore be replaced by the effective earthquake force (indicated by the subscript “eff”):
Deit(t) = —miig(t) (1.7.6)

This force is equal to mass times the ground acceleration, acting opposite to the accelera-
tion. It is important to recognize that the effective earthquake force is proportional to the
mass of the structure. Thus the structural designer increases the effective earthquake force
if the structural mass is increased.

Although the rotational components of ground motion are not measured during earth-
quakes, they can be estimated from the measured translational components and it is of
interest to apply the preceding concepts to this excitation. For this purpose, consider the
cantilever tower of Fig. 1.7.3a, which may be considered as an idealization of the water
tank of Fig. 1.1.2, subjected to base rotation 6,. The total displacement u’ of the mass is

O O Per(t) =—mii(1)

" (1)
Stationary base

Figure 1.7.2  Effective earthquake force: horizontal ground motion.
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Peir() =—mhB(1)

0 7. Stationary base

() (b)

Figure 1.7.3  Effective earthquake force: rotational ground motion.

made up of two parts: u associated with structural deformation and a rigid-body compo-
nent h6,, where h is the height of the mass above the base. At each instant of time these
displacements are related by

u'(t) = u(t) + ho, (1) (1.7.7)

Equations (1.7.2) and (1.7.3) are still valid, but the total acceleration i’ (#) must now be
determined from Eq. (1.7.7). Putting all these equations together leads to

mii + cit + ku = —mh6,(t) (1.7.8)

The effective earthquake force associated with ground rotation is

Peir(t) = —mhf, (1) (1.7.9)
Example 1.7

A uniform rigid slab of total mass m is supported on four columns of height 4 rigidly con-
nected to the top slab and to the foundation slab (Fig. E1.7a). Each column has a rectangular
cross section with second moments of area I, and I, for bending about the x and y axes,
respectively. Determine the equation of motion for this system subjected to rotation ugg of the
foundation about a vertical axis. Neglect the mass of the columns.

Solution The elastic resisting torque or torsional moment fs acting on the mass is shown in
Fig. E1.7b, and Newton’s second law gives

—fs = Ioiij (a)
where
ug (1) = ug(t) + ugy (t) (b)

Here uy is the rotation of the roof slab relative to the ground and /p = mb? + d?) /12 is the
moment of inertia of the roof slab about the axis normal to the slab passing through its center
of mass O. The units of moment of inertia are force x (length)?/acceleration. The torque fs
and relative rotation ug are related by

fs = kougp (©
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Figure E1.7

where kg is the torsional stiffness. To determine kg, we introduce a unit rotation, ug = 1,
and identify the resisting forces in each column (Fig. E1.7¢c). For a column with both ends
clamped, k, = 12EI, /h? and ky = 12E1, /h3. The torque required to equilibrate these

resisting forces is
dd bb
kg =4 <kx 55) +4 <k)5§) = kyd* + kyb? (d)

Substituting Egs. (c), (d), and (b) in (a) gives
Loiig + (kxd® + kyb®ug = —Ioiigy ()

This is the equation governing the relative rotation ug of the roof slab due to rotational
acceleration iig of the foundation slab.

1.8 PROBLEM STATEMENT AND ELEMENT FORCES
1.8.1 Problem Statement
Given the mass m, the stiffness k of a linearly elastic system, or the force—deformation

relation fg(u) for an inelastic system, the damping coefficient ¢, and the dynamic
excitation—which may be an external force p(f) or ground acceleration ii,(f)—a
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fundamental problem in structural dynamics is to determine the response of an SDF
system: the idealized one-story system or the mass—spring—damper system. The term re-
sponse is used in a general sense to include any response quantity, such as displacement,
velocity, or acceleration of the mass; also, an internal force or internal stress in the struc-
ture. When the excitation is an external force, the response quantities of interest are the
displacement or deformation u(t), velocity u(¢), and acceleration ii(¢) of the mass. For
earthquake excitation, both the total (or absolute) and the relative values of these quanti-
ties may be needed. The relative displacement u(¢) associated with deformations of the
structure is the most important since the internal forces in the structure are directly related
to u(t).

1.8.2 Element Forces

Once the deformation response history u(#) has been evaluated by dynamic analysis
of the structure (i.e., by solving the equation of motion), the element forces—bending
moments, shears, and axial forces—and stresses needed for structural design can be
determined by static analysis of the structure at each instant in time (i.e., no additional
dynamic analysis is necessary). This static analysis of a one-story linearly elastic frame
can be visualized in two ways:

1. At each instant, the lateral displacement u is known to which joint rotations
are related and hence they can be determined; see Eq. (b) of Example 1.1. From the
known displacement and rotation of each end of a structural element (beam and col-
umn) the element forces (bending moments and shears) can be determined through the
element stiffness properties (Appendix 1); and stresses can be obtained from element
forces.

2. The second approach is to introduce the equivalent static force, a central concept
in earthquake response of structures, as we shall see in Chapter 6. At any instant of time ¢
this force f is the static (slowly applied) external force that will produce the deformation
u determined by dynamic analysis. Thus

Js(t) = ku(t) (1.8.1)

where k is the lateral stiffness of the structure. Alternatively, fs can be interpreted as
the external force that will produce the same deformation « in the stiffness component of
the structure [i.e., the system without mass or damping (Fig. 1.5.2b)] as that determined
by dynamic analysis of the structure [i.e., the system with mass, stiffness, and damping
(Fig. 1.5.2a)]. Element forces or stresses can be determined at each time instant by static
analysis of the structure subjected to the force fs determined from Eq. (1.8.1). It is unnec-
essary to introduce the equivalent static force concept for the mass—spring—damper system
because the spring force, also given by Eq. (1.8.1), can readily be visualized.

For inelastic systems the element forces can be determined by appropriate modifi-
cations of these procedures to recognize that such systems are typically analyzed by time-
stepping procedures with iteration within a time step (Chapter 5).
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Why is external force in the second approach defined as f;(¢) and not as f;(¢)?
From Eq. (1.7.2), — f1(¢t) = fs() + fp(t) = ku(t) + cu(t). It is inappropriate to include
the velocity-dependent damping force because for structural design the computed element
stresses are to be compared with allowable stresses that are specified based on static tests
on materials (i.e., tests conducted at slow loading rates).

1.9 COMBINING STATIC AND DYNAMIC RESPONSES

In practical application we need to determine the total forces in a structure, including those
existing before dynamic excitation of the structure and those resulting from the dynamic
excitation. For a linear system the total forces can be determined by combining the results
of two separate analyses: (1) static analysis of the structure due to dead and live loads,
temperature changes, and so on; and (2) dynamic analysis of the structure subjected to the
time-varying excitation. This direct superposition of the results of two analyses is valid
only for linear systems.

The analysis of nonlinear systems cannot, however, be separated into two indepen-
dent analyses. The dynamic analysis of such a system must recognize the forces and
deformations already existing in the structure before the onset of dynamic excitation. This
is necessary, in part, to establish the initial stiffness property of the structure required to
start the dynamic analysis.

1.10 METHODS OF SOLUTION OF THE DIFFERENTIAL EQUATION

The equation of motion for a linear SDF system subjected to external force is the second-
order differential equation derived earlier:

mii + cu + ku = p(t) (1.10.1)

The initial displacement #(0) and initial velocity #(0) at time zero must be specified to
define the problem completely. Typically, the structure is at rest before the onset of dy-
namic excitation, so that the initial velocity and displacement are zero. A brief review of
four methods of solution is given in the following sections.

1.10.1 Classical Solution

Complete solution of the linear differential equation of motion consists of the sum of the
complementary solution u.(f) and the particular solution u,(¢), that is, u(t) = u.(t) +
up(t). Since the differential equation is of second order, two constants of integration are
involved. They appear in the complementary solution and are evaluated from a knowledge
of the initial conditions.
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Example 1.8

Consider a step force: p(t) = p,, t > 0. In this case, the differential equation of motion for a
system without damping (i.e., ¢ = 0) is

mii + ku = p, (a)
The particular solution for Eq. (a) is
pO
uy(t) = — b
p(1) T (b)
and the complementary solution is
uc(t) = Acoswyt + Bsinw,t (c)

where A and B are constants of integration and w, = /k/m.
The complete solution is given by the sum of Egs. (b) and (c):

u(t):Acosa)nt—FBsinwnt—F% (d)

If the system is initially at rest, #(0) = 0 and 1#(0) = 0 at + = 0. For these initial conditions
the constants A and B can be determined:

Po
A=—— B=0
f (e)
Substituting Eq. (e) in Eq. (d) gives
u(t) = %(1 — COS Wyt) ()

The classical solution will be the principal method we will use in solving the dif-
ferential equation for free vibration and for excitations that can be described analytically,
such as harmonic, step, and pulse forces.

1.10.2 Duhamel’s Integral

Another well-known approach to the solution of linear differential equations, such as
the equation of motion of an SDF system, is based on representing the applied force as
a sequence of infinitesimally short impulses. The response of the system to an applied
force, p(t), at time ¢ is obtained by adding the responses to all impulses up to that time.
We develop this method in Chapter 4, leading to the following result for an undamped
SDF system:

u(t) = ml /(; p(t) sinfw,(t — 7)]dt (1.10.2)

n

where w, = /k/m. Implicit in this result are “at rest” initial conditions. Equation (1.10.2),
known as Duhamel’s integral, is a special form of the convolution integral found in text-
books on differential equations.

Example 1.9

Using Duhamel’s integral, we determine the response of an SDF system, assumed
to be initially at rest, to a step force, p(t) = po,t > 0. For this applied force, Eq. (1.10.2)
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specializes to

t =t
S r —
u(r) = 22 f sinfw, (f — 7)] dt = 22 [w} = Lo _coswpt)
mwy J mowy, k

n Wp =0

This result is the same as that obtained in Section 1.10.1 by the classical solution of the differ-
ential equation.

Duhamel’s integral provides an alternative method to the classical solution if the
applied force p(7) is defined analytically by a simple function that permits analytical eval-
uation of the integral. For complex excitations that are defined only by numerical values of
p(t) at discrete time instants, Duhamel’s integral can be evaluated by numerical methods.
Such methods are not included in this book, however, because more efficient numerical
procedures are available to determine dynamic response; some of these are presented in
Chapter 5.

1.10.3 Frequency-Domain Method

The Laplace and Fourier transforms provide powerful tools for the solution of linear dif-
ferential equations, in particular the equation of motion for a linear SDF system. Because
the two transform methods are similar in concept, here we mention only the use of Fourier
transform, which leads to the frequency-domain method of dynamic analysis.

The Fourier transform P (w) of the excitation function p(t) is defined by

oo

P(w) =Flp®)] = / p(t)e ' dt (1.10.3)
—0o0

The Fourier transform U (w) of the solution u(z) of the differential equation is then given

by

U(w) = H(w)P(w) (1.10.4)

where the complex frequency-response function H (@) describes the response of the system
to harmonic excitation. Finally, the desired solution u(¢) is given by the inverse Fourier
transform of U (w):

u(t) = i/m H(w)P(w)e' dw (1.10.5)
27 J_o

Straightforward integration can be used to evaluate the integral of Eq. (1.10.3) but contour
integration in the complex plane is necessary for Eq. (1.10.5). Closed-form results can be
obtained only if p(¢) is a simple function, and application of the Fourier transform method
was restricted to such p(¢) until high-speed computers became available.

The Fourier transform method is now feasible for the dynamic analysis of linear
systems to complicated excitations p(t) or ii,(¢) that are described numerically. In such
situations, the integrals of both Egs. (1.10.3) and (1.10.5) are evaluated numerically by the
discrete Fourier transform method using the fast Fourier transform algorithm developed in
1965. These concepts are developed in Appendix A.
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Figure 1.10.1 These two reinforced-concrete dome-shaped containment structures house
the nuclear reactors of the San Onofre power plant in California. For design purposes, their
fundamental natural vibration period was computed to be 0.15 sec assuming the base as
fixed, and 0.50 sec considering soil flexibility. This large difference in the period indicates
the important effect of soil-structure interaction for these structures. (Courtesy of Southern
California Edison.)

The frequency-domain method of dynamic analysis is symbolized by Egs. (1.10.3)
and (1.10.5). The first gives the amplitudes P(w) of all the harmonic components that
make up the excitation p(t). The second equation can be interpreted as evaluating the har-
monic response of the system to each component of the excitation and then superposing
the harmonic responses to obtain the response u(¢). The frequency-domain method, which
is an alternative to the time-domain method symbolized by Duhamel’s integral, is espe-
cially useful and powerful for dynamic analysis of structures interacting with unbounded
media. Examples are (1) the earthquake response analysis of a structure where the ef-
fects of interaction between the structure and the unbounded underlying soil are signifi-
cant (Fig. 1.10.1), and (2) the earthquake response analysis of concrete dams interacting
with the water impounded in the reservoir that extends to great distances in the upstream
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Figure 1.10.2 Morrow Point Dam, a 465-ft-high arch dam, on the Gunnison River,
Colorado. Determined by forced vibrations tests, the fundamental natural vibration pe-
riod of the dam in antisymmetric vibration is 0.268 sec with the reservoir partially full and
0.303 sec with a full reservoir. (Courtesy of U.S Bureau of Reclamation.)

direction (Fig. 1.10.2). Because earthquake analysis of such complex structure—soil and
structure—fluid systems is beyond the scope of this book, a comprehensive presentation of
the frequency-domain method of dynamic analysis is not included. However, an introduc-
tion to the method is presented in Appendix A.

1.10.4 Numerical Methods

The preceding three dynamic analysis methods are restricted to linear systems and cannot
consider the inelastic behavior of structures anticipated during earthquakes if the ground
shaking is intense. The only practical approach for such systems involves numerical time-
stepping methods, which are presented in Chapter 5. These methods are also useful for
evaluating the response of linear systems to excitation—applied force p(f) or ground
motion ii, (t)—which is too complicated to be defined analytically and is described only
numerically.
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1.11 STUDY OF SDF SYSTEMS: ORGANIZATION

We will study the dynamic response of linearly elastic SDF systems in free vibration
(Chapter 2), to harmonic and periodic excitations (Chapter 3), to step and pulse excita-
tions (Chapter 4), and to earthquake ground motion (Chapter 6). Because most structures
are designed with the expectation that they will deform beyond the linearly elastic limit
during major, infrequent earthquakes, the inelastic response of SDF systems is studied in
Chapter 7. The time variation of response r (¢) to these various excitations will be of inter-
est. For structural design purposes, the maximum value (over time) of response  contains
the crucial information, for it is related to the maximum forces and deformations that a
structure must be able to withstand. We will be especially interested in the peak value of
response, or for brevity, peak response, defined as the maximum of the absolute value of
the response quantity:

Ty Emraxlr(t)| (1.11.1)

By definition the peak response is positive; the algebraic sign is dropped because it is
usually irrelevant for design. Note that the subscript o attached to a response quantity
denotes its peak value.

FURTHER READING

Clough, R. W., and Penzien, J., Dynamics of Structures, McGraw-Hill, New York, 1993, Sections 4-3,
6-2, 6-3, and 12-6.
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2002, Chapter 9 and Section 13.5.

APPENDIX 1: STIFFNESS COEFFICIENTS FOR A FLEXURAL
ELEMENT

From the slope deflection equations, we can write the stiffness coefficients for a
linearly elastic, prismatic (uniform) frame element. These are presented in Fig. Al.1
for an element of length L, second moment of area 7, and elastic modulus E. The stiffness

2EI 4E1 6EI
'L EI L 'L2 El
7

? I | ? L ’J L?

I Y |
6ET 6ET 12E1 12E1
I Y e

(a) (b) ()

Figure Al.1
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coefficients for joint rotation are shown in part (a) and those for joint translation in part (b)
of the figure.

Now consider the element shown in Fig. Al.lc with its two nodes identified as a
and b that is assumed to be axially inextensible. Its four degrees of freedom are the nodal
translations u, and u; and nodal rotations 6, and 0,. The bending moments at the two
nodes are related to the four DOFs as follows:

4E1 2E1 6E1 6E1

o=~ 0a+ 0 it — i (A1.1)
= 2EL, AEL,  GEI 6EI AL2)
= a Ug; — u .
PTTL L e L2 "

The shearing forces at the two nodes are related to the four DOFs as follows:
12E1 12E1 6E1 6E1

Vo= I3 Uq JE up + 12 04 + 12 Op (A1.3)
12E1 12E1 6E1 6E1
Vy, = — i Ug + 3 Up — 2 6, — 12 0p (A1.4)

At each instant of time, the nodal forces M,, My, V,, and V,, are calculated from u,, u,,
0., and 6,. The bending moment and shear at any other location along the element are
determined by statics applied to the element of Fig. Al.lc.

PROBLEMS

1.1- Starting from the basic definition of stiffness, determine the effective stiffness of the combined
1.3 spring and write the equation of motion for the spring—mass systems shown in Figs. P1.1 to
P1.3.

k50

Figure P1.1

Figure P1.3

1.4  Derive the equation governing the free motion of a simple pendulum that consists of a rigid
massless rod pivoted at point O with a mass m attached at the tip (Fig. P1.4). Linearize the
equation, for small oscillations, and determine the natural frequency of oscillation.
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M Figure P1.4

1.5  Consider the free motion in the xy plane of a compound pendulum that consists of a rigid rod
suspended from a point (Fig. P1.5). The length of the rod is L and its mass m is uniformly
distributed. The width of the uniform rod is  and the thickness is 7. The angular displacement
of the centerline of the pendulum measured from the y-axis is denoted by 6 ().

(a) Derive the equation governing 6(¢).
(b) Linearize the equation for small 6.
(c¢) Determine the natural frequency of small oscillations.

Figure P1.5 Figure P1.6

1.6  Repeat Problem 1.5 for the system shown in Fig. P1.6, which differs in only one sense: its
width varies from zero at O to b at the free end.

1.7 Develop the equation governing the longitudinal motion of the system of Fig. P1.7. The rod is
made of an elastic material with elastic modulus E; its cross-sectional area is A and its length
is L. Ignore the mass of the rod and measure « from the static equilibrium position.

e L

w7

‘P(t) Figure P1.7
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1.8 A rigid disk of mass m is mounted at the end of a flexible shaft (Fig. P1.8). Neglecting the
weight of the shaft and neglecting damping, derive the equation of free torsional vibration of
the disk. The shear modulus (of rigidity) of the shaftis G.

e /7774

R

Figure P1.8

1.9- Write the equation governing the free vibration of the systems shown in Figs. P1.9 to P1.11.
1.11 Assuming the beam to be massless, each system has a single DOF defined as the vertical
deflection under the weight w. The flexural rigidity of the beam is £/ and the length is L.
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Figure P1.9 Figure P1.10
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1.12 Determine the natural frequency of a weight w suspended from a spring at the midpoint of a

simply supported beam (Fig. P1.12). The length of the beam is L, and its flexural rigidity is
E1. The spring stiffness is k. Assume the beam to be massless.

L
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Figure P1.12



Chap. 1 Problems 37

1.13

1.14

1.15-
1.16

1.17

Derive the equation of motion for the frame shown in Fig. P1.13. The flexural rigidity of
the beam and columns is as noted. The mass lumped at the beam is m; otherwise, assume the
frame to be massless and neglect damping. By comparing the result with Eq. (1.3.2), comment
on the effect of base fixity.

El, = oo m
—o0 p(®)
h El. EI.
7. 7.
L
Iy 4 .
t t Figure P1.13

Write the equation of motion for the one-story, one-bay frame shown in Fig. P1.14. The
flexural rigidity of the beam and columns is as noted. The mass lumped at the beam is m;
otherwise, assume the frame to be massless and neglect damping. By comparing this equation
of motion with the one for Example 1.1, comment on the effect of base fixity.

EI. m
= O p()

h EI. EI

.
.

Figure P1.14

Write the equation of motion of the one-story, one-bay frame shown in Figs. P1.15 and P1.16.
The flexural rigidity of the beam and columns is as noted. The mass lumped at the beam is
m; otherwise, assume the frame to be massless and neglect damping. Check your result from
Problem 1.15 against Eq. (1.3.5). Comment on the effect of base fixity by comparing the two
equations of motion.

ElJ2 m
EL.I2 m < O p()
O = p(0)
h El. El.
h El.
2 7. 2
L= 2h L= 2h
I N I iy
i ? * *
Figure P1.15 Figure P1.16

A heavy rigid platform of weight w is supported by four columns, hinged at the top and
the bottom, and braced laterally in each side panel by two diagonal steel wires as shown in
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Fig. P1.17. Each diagonal wire is pretensioned to a high stress; its cross-sectional area is A
and elastic modulus is E. Neglecting the mass of the columns and wires, derive the equation of
motion governing free vibration in (a) the x-direction, and (b) the y-direction. (Hint: Because
of high pretension, all wires contribute to the structural stiffness, unlike Example 1.2, where
the braces in compression do not provide stiffness.)

Figure P1.17

1.18 Derive the equation of motion governing the torsional vibration of the system of Fig. P1.17
about the vertical axis passing through the center of the platform.

1.19 An automobile is crudely idealized as a lumped mass m supported on a spring—damper sys-
tem as shown in Fig. P1.19. The automobile travels at constant speed v over a road whose
roughness is known as a function of position along the road. Derive the equation of motion.

m
(B Lo
(1)
uo |
X

Vv

\

Figure P1.19
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Free Vibration

PREVIEW

A structure is said to be undergoing free vibration when it is disturbed from its static equi-
librium position and then allowed to vibrate without any external dynamic excitation. In
this chapter we study free vibration leading to the notions of the natural vibration frequency
and damping ratio for an SDF system. We will see that the rate at which the motion decays
in free vibration is controlled by the damping ratio. Thus the analytical results describing
free vibration provide a basis to determine the natural frequency and damping ratio of a
structure from experimental data of the type shown in Fig. 1.1.4.

Although damping in actual structures is due to several energy-dissipating mech-
anisms acting simultaneously, a mathematically convenient approach is to idealize them
by equivalent viscous damping. Consequently, this chapter deals primarily with viscously
damped systems. However, free vibration of systems in the presence of Coulomb friction
forces is analyzed toward the end of the chapter.

2.1 UNDAMPED FREE VIBRATION

The motion of linear SDF systems, visualized as an idealized one-story frame or a mass—
spring—damper system, subjected to external force p(t) is governed by Eq. (1.5.2). Setting
p(t) = 0 gives the differential equation governing free vibration of the system, which for
systems without damping (¢ = 0) specializes to

mii + ku =0 @2.1.1)

39
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Free vibration is initiated by disturbing the system from its static equilibrium position by
imparting the mass some displacement #(0) and velocity #(0) at time zero, defined as the
instant the motion is initiated:

u=u(0) u=u(0) (2.1.2)

Subject to these initial conditions, the solution to the homogeneous differential equation is
obtained by standard methods (see Derivation 2.1):

u0) .
u(t) = u(0) cos w,t + sin w, t (2.1.3)
where
k
Wy, =4 — 2.1.4)
m

Equation (2.1.3) is plotted in Fig. 2.1.1. It shows that the system undergoes vibra-
tory (or oscillatory) motion about its static equilibrium (or undeformed, u = 0) position;
and that this motion repeats itself after every 27 /w, seconds. In particular, the state (dis-
placement and velocity) of the mass at two time instants, #; and #; + 27 /w,, is identical:
u(ty) = u(t) +2n/w,) and u(t;) = u(t; + 27w /w,). These equalities can easily be proved,
starting with Eq. (2.1.3). The motion described by Eq. (2.1.3) and shown in Fig. 2.1.1 is
known as simple harmonic motion.

The portion a—b—c—d—e of the displacement—time curve describes one cycle of free
vibration of the system. From its static equilibrium (or undeformed) position at a, the
mass moves to the right, reaching its maximum positive displacement u, at b, at which
time the velocity is zero and the displacement begins to decrease and the mass returns
back to its equilibrium position ¢, at which time the velocity is maximum and hence the

. ] AN

Amplitude, u,,

u(0) T

a c e /

> 1

Figure 2.1.1 Free vibration of a system without damping.
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mass continues moving to the left, reaching its minimum displacement —u,, at d, at which
time the velocity is again zero and the displacement begins to decrease again and the mass
returns to its equilibrium position at e. At time instant e, 277/, seconds after time instant
a, the state (displacement and velocity) of the mass is the same as it was at time instant a,
and the mass is ready to begin another cycle of vibration.

The time required for the undamped system to complete one cycle of free vibration
is the natural period of vibration of the system, which we denote as 7, in units of sec-
onds. It is related to the natural circular frequency of vibration, w,, in units of radians per
second:

_271

T, (2.1.5)

Wy

A system executes 1/T, cycles in 1 sec. This natural cyclic frequency of vibration is
denoted by

1

fo = T (2.1.6)

The units of f, are hertz (Hz) [cycles per second (cps)]; f, is obviously related to w,
through

Wy

fnzg

The term natural frequency of vibration applies to both w, and f,.

The natural vibration properties w,, T,,, and f, depend only on the mass and stiffness
of the structure; see Egs. (2.1.4) to (2.1.6). The stiffer of two SDF systems having the same
mass will have the higher natural frequency and the shorter natural period. Similarly, the
heavier (more mass) of two structures having the same stiffness will have the lower natural
frequency and the longer natural period. The qualifier natural is used in defining 7,,, w,,
and f, to emphasize the fact that these are natural properties of the system when it is
allowed to vibrate freely without any external excitation. Because the system is linear,
these vibration properties are independent of the initial displacement and velocity. The
natural frequency and period of the various types of structures of interest to us vary over a
wide range, as shown in Figs. 1.10.1, 1.10.2, and 2.1.2a—f.

The natural circular frequency w,, natural cyclic frequency f,;, and natural period 7,
defined by Egs. (2.1.4) to (2.1.6) can be expressed in the alternative form

1 b
o= &  pf=— |8 g0 ™ (2.1.8)
85t 271 85t g

where 8¢ = mg/k, and where g is the acceleration due to gravity. This is the static de-
flection of the mass m suspended from a spring of stiffness k; it can be visualized as the
system of Fig. 1.6.1 oriented in the vertical direction. In the context of the one-story frame
of Fig. 1.2.1, § is the lateral displacement of the mass due to lateral force mg.

(2.1.7)
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Figure 2.1.2a  Alcoa Building, San
Francisco, California. The fundamental
natural vibration periods of this 26-story
steel building are 1.67 sec for north—south
(longitudinal) vibration, 2.21 sec for
east—west (transverse) vibration, and 1.12
sec for torsional vibration about a vertical
axis. These vibration properties were
determined by forced vibration tests.
(Courtesy of International Structural Slides.)

Figure 2.1.2b  Transamerica Building, San
Francisco, California. The fundamental
natural vibration periods of this 49-story
steel building, tapered in elevation, are 2.90
sec for north—south vibration and also for
east—west vibration. These vibration
properties were determined by forced
vibration tests. (Courtesy of International
Structural Slides.)
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Figure 2.1.2¢ Medical Center Building, Richmond, California. The fundamental natural
vibration periods of this three-story steel frame building are 0.63 sec for vibration in the
long direction, 0.74 sec in the short direction, and 0.46 sec for torsional vibration about
a vertical axis. These vibration properties were determined from motions of the building
recorded during the 1989 Loma Prieta earthquake. (Courtesy of California Strong Motion
Instrumentation Program.)

Figure 2.1.2d Pine Flat Dam on the Kings River, near Fresno, California. The funda-
mental natural vibration period of this 400-ft-high concrete gravity dam was measured by
forced vibration tests to be 0.288 sec and 0.306 sec with the reservoir depth at 310 ft and
345 ft, respectively.

43
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Figure 2.1.2e Golden Gate Bridge, San Francisco, California. The fundamental natural
vibration periods of this suspension bridge with the main span of 4200 ft are 18.2 sec for
transverse vibration, 10.9 sec for vertical vibration, 3.81 sec for longitudinal vibration,
and 4.43 sec for torsional vibration. These vibration properties were determined from
recorded motions of the bridge under ambient (wind, traffic, etc.) conditions. (Courtesy of
International Structural Slides.)

Figure 2.1.2f Reinforced-concrete
chimney, located in Aramon, France. The
fundamental natural vibration period of this
250-m-high chimney is 3.57 sec; it was
determined from records of wind-induced
vibration.
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The undamped system oscillates back and forth between the maximum displacement
u, and minimum displacement —u,. The magnitude u, of these two displacement values
is the same; it is called the amplitude of motion and is given by

. 2
", = \/[u(O)]Z + [”(O)} (2.1.9)

n

The amplitude u, depends on the initial displacement and velocity. Cycle after cycle it
remains the same; that is, the motion does not decay. We had mentioned in Section 1.1 this
unrealistic behavior of a system if a damping mechanism to represent dissipation of energy
is not included.

The natural frequency of the one-story frame of Fig. 1.3.2a with lumped mass m and
columns clamped at the base is

k 24FE1.12p + 1
Wy =4/ — k=

m TR 12p+44

(2.1.10)

where the lateral stiffness comes from Eq. (1.3.5) and p = (EI,/L) ~ (2E1./h). For the
extreme cases of a rigid beam, p = 00, and a beam with no stiffness, p = 0, the lateral
stiffnesses are given by Eqs. (1.3.2) and (1.3.3) and the natural frequencies are

24FE1, 6E1,
(@n) p=co = W (wn)p=¢ = W (2.1.11)

The natural frequency is doubled as the beam-to-column stiffness ratio, p, increases
from 0 to oo; its variation with p is shown in Fig. 2.1.3.

The natural frequency is similarly affected by the boundary conditions at the base
of the columns. If the columns are hinged at the base rather than clamped and the beam
is rigid, w, = /6E1./mh3, which is one-half of the natural frequency of the frame with
clamped-base columns.

- (@)=
= i
NU
N 05
x ((Dn)p =0
i
10 1073 102 107! 10° 10 10?

p

Figure 2.1.3  Variation of natural frequency, w,, with beam-to-column stiffness ratio, p.
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Derivation 2.1

The solution of Eq. (2.1.1), a linear, homogeneous, second-order differential equation with
constant coefficients, has the form

u=e" (a)
where the constant A is unknown. Substitution into Eq. (2.1.1) gives
mA2 + ke =0
The exponential term is never zero, so
(mA? +k) =0 (b)
Known as the characteristic equation, Eq. (b) has two roots:
A2 =Ziow, (c)
where i = +/—1. The general solution of Eq. (2.1.1) is
ut) = aje + are’’
which after substituting Eq. (c) becomes
iy

u(t) = aje'’ + ape~ion! (d)

where a| and a; are complex-valued constants yet undetermined. By using the Euler relations,
e =cosx +isinx and e = cosx — i sinx. Equation (d) can be rewritten as

u(t) = Acoswyt + Bsinwyt (e)

where A and B are real-valued constants yet undetermined. Equation (e) is differentiated to
obtain

iu(t) = —wy Asinw,t + w, B cos wy,t [63)

Evaluating Egs. (e) and (f) at time zero gives the constants A and B in terms of the initial
displacement #(0) and initial velocity #(0):

u@®=A  u0) =w,B (®
Substituting for A and B from Eq. (g) into Eq. (e) leads to the solution given in Eq. (2.1.3).

Example 2.1

For the one-story industrial building of Example 1.2, determine the natural circular frequency,
natural cyclic frequency, and natural period of vibration in (a) the north—south direction and
(b) the east—west direction.

Solution (a) North—south direction:

38.58
0.04663

(wp)N=§ = = 28.73 rad/sec

(Tons = 2% = 0219
WIN-S = 5g g3 T o See

1
_¢ = —— =4.57H
(fu)N=s 0219 z
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(b) East-west direction:

119.6
0.04663

(@p)E-W = = 50.64 rad/sec

2w
(Tn)E_W = m =0.124 sec

1
. = - = 8.06H
(fn)E-wW 0124 zZ

Observe that the natural frequency is much higher (and the natural period much shorter) in
the east—west direction because the vertical bracing makes the system much stiffer, although
the columns of the frame are bending about their weak axis; the vibrating mass is the same in
both directions.

Example 2.2

For the three-span box girder bridge of Example 1.3, determine the natural circular frequency,
natural cyclic frequency, and natural period of vibration for longitudinal motion.

Solution
k 25,880
Wy = - = 7149 = 10.97 rad/sec
2
T, = L~ 0.573 sec
10.97
1 ! 1.75 H
n=——=1. z
' 0.573
Example 2.3

Determine the natural cyclic frequency and the natural period of vibration of a weight of 20 1b
suspended as described in Example 1.4.

Solution
g w 20 .
=— & s =Y 2 _149in
v L el S T m
1 [ 386
fo= — 22— 256 H
27\ 1.494

1
T, = — = 0.391 sec

Jn
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Example 2.4

Consider the system described in Example 1.7 with b = 30 ft,d = 20 ft, h = 12 ft, slab weight
= 0.1 kip/ft%, and the lateral stiffness of each column in the x and y directions is k, = 1.5
and ky, = 1.0, both in kips/in. Determine the natural frequency and period of torsional motion
about the vertical axis.

Solution From Example 1.7, the torsional stiffness ky and the moment of inertia /o are
ko = ked® + kyb? = 1.5(12)(20)* + 1.0(12)(30)* = 18,000 kip-ft/rad

bE+d?>  0.130 x 20) [ (30)2 + (20)2
m =
12 (32.2) 12

Ip = } = 201.86 kip-sec?-ft

k,
wy = I—H = 9.44 rad/sec Jfn=149Hz T, = 0.67 sec
o

2.2 VISCOUSLY DAMPED FREE VIBRATION

Setting p(¢r) = 0 in Eq. (1.5.2) gives the differential equation governing free vibration of
SDF systems with damping:

mii + cu +ku =0 (2.2.1a)
Dividing by m gives
i + 2¢wptt + lu =0 (2.2.1b)
where w,, = /k/m as defined earlier and
c c
¢ = = — (2.2.2)
2mw, Cer
We will refer to
2k
Cor = 2mw, =2V km = — 2.2.3)
Wp

as the critical damping coefficient, for reasons that will appear shortly; and ¢ is the damp-
ing ratio or fraction of critical damping. The damping constant ¢ is a measure of the
energy dissipated in a cycle of free vibration or in a cycle of forced harmonic vibration
(Section 3.8). However, the damping ratio—a dimensionless measure of damping—is a
property of the system that also depends on its mass and stiffness. The differential equa-
tion (2.2.1) can be solved by standard methods (similar to Derivation 2.1) for given initial
displacement #(0) and velocity #(0). Before writing any formal solution, however, we
examine the solution qualitatively.

2.2.1 Types of Motion
Figure 2.2.1 shows a plot of the motion u(#) due to initial displacement u(0) for three val-

uesof ¢. If ¢ < ¢ or ¢ < 1, the system oscillates about its equilibrium position with a pro-
gressively decreasing amplitude. If ¢ = ¢, or ¢ = 1, the system returns to its equilibrium
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Critically damped, { =1

Overdamped, { =2

u(t) / u(0)

| Underdamped, { = 0.1

Figure 2.2.1 Free vibration of underdamped, critically damped, and overdamped sys-
tems.

position without oscillating. If ¢ > ¢, or { > 1, again the system does not oscillate and
returns to its equilibrium position, as in the { = 1 case, but at a slower rate.

The damping coefficient ¢, is called the critical damping coefficient because it is
the smallest value of ¢ that inhibits oscillation completely. It represents the dividing line
between oscillatory and nonoscillatory motion.

The rest of this presentation is restricted to underdamped systems (¢ < c.) because
structures of interest—buildings, bridges, dams, nuclear power plants, offshore structures,
etc.—all fall into this category, as typically, their damping ratio is less than 0.10. There-
fore, we have little reason to study the dynamics of critically damped systems (¢ = c.;) or
overdamped systems (¢ > c.;). Such systems do exist, however; for example, recoil mech-
anisms, such as the common automatic door closer, are overdamped; and instruments used
to measure steady-state values, such as a scale measuring dead weight, are usually criti-
cally damped. Even for automobile shock absorber systems, however, damping is usually
less than half of critical, { < 0.5.

2.2.2 Underdamped Systems

The solution to Eq. (2.2.1) subject to the initial conditions of Eq. (2.1.2) for systems with
¢ < ¢ or¢ < 1is (see Derivation 2.2)

(2.2.4)

u(t) = e 5@’ [M(O) coswpt + M sin a)Dt:|

wp
where

wp = /1 — ¢2 (2.2.5)

Observe that Eq. (2.2.4) specialized for undamped systems (¢ = 0) reduces to Eq. (2.1.3).
Equation (2.2.4) is plotted in Fig. 2.2.2, which shows the free vibration response of
an SDF system with damping ratio { = 0.05, or 5%. Included for comparison is the free
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u(0)

[
1 pe'Cmnt Undamped structure
.
—
—
_ Damped structure
u(0) —_ -
[ o

L— - 7

_pe_C(D”[ Tn = ZTC/O),,

Tp=2n/wp

Figure 2.2.2 Effects of damping on free vibration.

vibration response of the same system but without damping, presented earlier in Fig. 2.1.1.
Free vibration of both systems is initiated by the same initial displacement u(0) and ve-
locity #(0), and hence both displacement—time plots start at + = O with the same ordinate
and slope. Equation (2.2.4) and Fig. 2.2.2 indicate that the natural frequency of damped
vibration is wp, and it is related by Eq. (2.2.5) to the natural frequency w, of the system
without damping. The natural period of damped vibration, Tp = 2w /wp, is related to the
natural period 7, without damping by

T,
Tp = — (2.2.6)

Vs

The displacement amplitude of the undamped system is the same in all vibration cycles,
but the damped system oscillates with amplitude decreasing with every cycle of vibration.
Equation (2.2.4) indicates that the displacement amplitude decays exponentially with time,
as shown in Fig. 2.2.2. The envelope curves &=pe~ %", where

. 2
pzwmupﬁﬁw@} 027

wp

touch the displacement—time curve at points slightly to the right of its peak values.

Damping has the effect of lowering the natural frequency from w, to wp and length-
ening the natural period from 7,, to Tp. These effects are negligible for damping ratios
below 20%, a range that includes most structures, as shown in Fig. 2.2.3, where the ratio
wp/w, = T,/Tp is plotted against ¢. For most structures the damped properties wp and
Tp are approximately equal to the undamped properties w, and 7, respectively. For sys-
tems with critical damping, wp = 0 and T, = oo. This is another way of saying that the
system does not oscillate, as shown in Fig. 2.2.1.
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Range of damping for
most structures
1 T
0.8 A
a 0.6 1 (('OD/O‘)n)2 + t.:z =1
N =
I 0.4 -
36
0.2 1
0 T T T T
0 02 04 06 08 1
. . Figure 2.2.3 Effects of damping on the
Damping ratio § natural vibration frequency.
The more important effect of damping is on the rate at which free vibration decays.
This is displayed in Fig. 2.2.4, where the free vibration due to initial displacement u(0) is
plotted for four systems having the same natural period 7, but differing damping ratios:
¢ =2,5,10, and 20%.
1
nn C=2% ﬂ C=5%
0 AI\AI\A[\AI\AAAAI\AAA\/\V; AAAI\AAVAVAVA"
S | VVVVVVVVVVEEE TRAAN
=1
S 11 I I I I I I
s {=10% {=20%
0 !\ I\ AW l\ A
VVVv Vv
_] 1 1 1 1 1 1
0 5 10 15 20 5 10 15 20
t/T, t/T,

Figure 2.2.4 Free vibration of systems with four levels of damping: ¢ = 2, 5, 10, and 20%.

Derivation 2.2
Substituting Eq. (a) of Derivation 2.1 into Eq. (2.2.1b) gives
()\2 + 2L wp ) + a)%)e“ =0
which is satisfied for all values of ¢ if
A+ 2wph+ @t =0 (a)

Equation (a), which is known as the characteristic equation, has two roots:

Mg:w&—(ihh—{ﬂ (b)
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which are complex-valued for { < 1. The general solution of Eq. (2.2.1b) is
u(t) = ale}“l + age)‘zt (c)
which after substituting Eq. (b) becomes
u(t) = e~ten! (alei“’”t + aze_i“’”t) (d)

where a; and a; are complex-valued constants as yet undetermined and wp is defined in
Eq. (2.2.5). As in Derivation 2.1, the term in parentheses in Eq. (d) can be rewritten in terms
of trigonometric functions to obtain

u(t) = e " (Acoswpt + Bsinwpt) (e)

where A and B are real-valued constants yet undetermined. These can be expressed in terms
of the initial conditions by proceeding along the lines of Derivation 2.1:

Amuo g OO .

Substituting for A and B in Eq. (e) leads to the solution given in Eq. (2.2.4).

‘We now make two observations that_will be useful later: (1) A; and X, in Eq. (b) are a
complex conjugate pair, denoted by A and X; and (2) a; and a; must also be a conjugate pair
because u(z) is real valued. Thus, Eq. (c) can be written as

u(t) = b + et (g2)

where b is a complex-valued constant.
2.2.3 Decay of Motion

In this section a relation between the ratio of two successive peaks of damped free vibration
and the damping ratio is presented. The ratio of the displacement at time ¢ to its value a
full vibration period Tp later is independent of ¢. Derived from Eq. (2.2.4), this ratio is
given by the first equality in
u(t)
M([ + TD)

J1=2¢2

and the second equality is obtained by utilizing Eqs. (2.2.6) and (2.1.5). This result also
gives the ratio u; /u;4; of successive peaks (maxima) shown in Fig. 2.2.5, because these
peaks are separated by period Tp:

u; ( 2r¢ )
— =exp| —— (2.2.9)

The natural logarithm of this ratio, called the logarithmic decrement, we denote by 4:
5 =1n-4 2m¢ (2.2.10)
=ln— = —— 2.
Uirr 1 -2¢2

If ¢ is small, y/1 — ¢% ~ 1 and this gives an approximate equation:
8 ~2m¢ (2.2.11)

=exp(lw,Tp) = exp(zn—g) (2.2.8)
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AN

Figure 2.2.5

Figure 2.2.6 shows a plot of the exact and approximate relations between § and ¢. It is
clear that Eq. (2.2.11) is valid for ¢ < 0.2, which covers most practical structures.

If the decay of motion is slow, as is the case for lightly damped systems such as the
aluminum model in Fig. 1.1.4, it is desirable to relate the ratio of two amplitudes several
cycles apart, instead of successive amplitudes, to the damping ratio. Over j cycles the
motion decreases from u; to u;,. This ratio is given by

uq uip Uy Uz Uj

Uj+1 Up U3z Uy Ujy1
Therefore,

8= (1/j) In(uyfujs1) ~ 27¢ (2.2.12)

To determine the number of cycles elapsed for a 50% reduction in displacement amplitude,
we obtain the following relation from Eq. (2.2.12):

Jsow = 0.11/¢ (2.2.13)
This equation is plotted in Fig. 2.2.7.
10
5= 2ng
=i

4 /,%//
2 pi
/

Logarithmic decrement &

0 0.2 0.4 0.6 0.8 1 Figure 2.2.6 Exact and approximate
relations between logarithmic decrement and

Damping ratio { damping ratio.
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Figure 2.2.7 Number of cycles required to

Damping ratio { reduce the free vibration amplitude by 50%.

2.2.4 Free Vibration Tests

Because it is not possible to determine analytically the damping ratio ¢ for practical struc-
tures, this elusive property should be determined experimentally. Free vibration experi-
ments provide one means of determining the damping. Such experiments on two one-story
models led to the free vibration records presented in Fig. 1.1.4; a part of such a record
is shown in Fig. 2.2.8. For lightly damped systems the damping ratio can be determined
from

1 Uu; 1 Ll,

{=—In—— or {=—In— (2.2.14)
i iy 2rjo Uiy

The first of these equations is equivalent to Eq. (2.2.12), which was derived from the
equation for u(¢). The second is a similar equation in terms of accelerations, which are
easier to measure than displacements. It can be shown to be valid for lightly damped
systems.

Tp Tp

lhj1 Ui

s
VAAVARVARV.

Figure 2.2.8 Acceleration record of a freely vibrating system.
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The natural period T of the system can also be determined from the free vibration
record by measuring the time required to complete one cycle of vibration. Comparing this
with the natural period obtained from the calculated stiffness and mass of an idealized sys-
tem tells us how accurately these properties were calculated and how well the idealization
represents the actual structure.

Example 2.5

Determine the natural vibration period and damping ratio of the plexiglass frame model
(Fig. 1.1.4a) from the acceleration record of its free vibration shown in Fig. 1.1.4c.

Solution The peak values of acceleration and the time instants they occur can be read from
the free vibration record or obtained from the corresponding data stored in a computer during
the experiment. The latter provides the following data:

Peak  Time, #; (sec) Peak, ii; (g)

1 1.110 0.915
11 3.844 0.076
3.844 —1.110 1 0.915
Tp = ——— = 0.273 sec .= In & _ 0.0396 or 3.96%
10 27 (10)  0.076g

Example 2.6

A free vibration test is conducted on an empty elevated water tank such as the one in Fig. 1.1.2.
A cable attached to the tank applies a lateral (horizontal) force of 16.4 kips and pulls the tank
horizontally by 2 in. The cable is suddenly cut and the resulting free vibration is recorded.
At the end of four complete cycles, the time is 2.0 sec and the amplitude is 1 in. From these
data compute the following: (a) damping ratio; (b) natural period of undamped vibration;
(c) stiffness; (d) weight; (e) damping coefficient; and (f) number of cycles required for the
displacement amplitude to decrease to 0.2 in.

Solution (a) Substituting u; = 2in., j =4, and u; ; = 1 in. in Eq. (2.2.14a) gives

1 2
— In= = 0.0276 = 2.76%
2rd) 1

Assumption of small damping implicit in Eq. (2.2.14a) is valid.

¢

2.0
(b) Tp = 7= 0.5sec; T, ~Tp =0.5sec.

16.4 .
(¢) k = —— = 8.2 kips/in.
3 2
b4

d) v, = T—: =05 = 12.57 rad/sec;
k82
0 (12.57)2
w = (0.0519)386 = 20.03 kips.

(€) ¢ = ¢(2v/km) = 0.0276 [2/8.2(0.0519) | = 0.0360 kip-sec/in.

= 0.0519 kip-sec/in.;

m =
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o | 2
~ .~ —— In— =13.28 cycles ~ 13 cycles.
=5 Y ! T 2m0276) 02 cycles ™ 1o cycles

Example 2.7

The weight of water required to fill the tank of Example 2.6 is 80 kips. Determine the natural
vibration period and damping ratio of the structure with the tank full.

Solution

w = 20.03 + 80 = 100.03 kips

100.03
= = 0.2591 kip-sec?/in.
386
0.2591
T, =27 |2 =2n = 1.12 sec
k 8.2
¢ 0.0360

e =0.0123 =1.23%

T 2Jkm  2/8.2(00.259T)

Observe that the damping ratio is now smaller (1.23% compared to 2.76% in Example 2.6)
because the mass of the full tank is larger and hence the critical damping coefficient is larger.

2.3 ENERGY IN FREE VIBRATION

The energy input to an SDF system by imparting to it the initial displacement u(0) and
initial velocity u#(0) is

1 2 1 . 2
Er = Sklu©] + 5m[u(0)] (2.3.1)

At any instant of time the total energy in a freely vibrating system is made up of two
parts, kinetic energy Ex of the mass and potential energy equal to the strain energy Eg of
deformation in the spring:

| 1
Ex(t) = smla@F  Es() = Sk[u@®F (23.2)
Substituting u(¢) from Eq. (2.1.3) for an undamped system leads to
1 1(0 ?
Ex(t) = 5ma)ﬁ |:—u(0) sin w,t + #) cos wnt:| (2.3.3)
Wy
1 @ 71
Eg(t) = Ek u(0) cos w,t + sin w,t 2.3.4)
wy
The total energy is
1 .
Ex(@)+ Es(t) = Ek[u(O)]2 + Em[u(O)]2 (2.3.5)

wherein Eq. (2.1.4) has been utilized together with a well-known trigonometric identity.
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Thus, the total energy is independent of time and equal to the input energy of Eq. (2.3.1),
implying conservation of energy during free vibration of a system without damping.

For systems with viscous damping, the kinetic energy and potential energy could be
determined by substituting u(¢) from Eq. (2.2.4) and its derivative u(¢) into Eq. (2.3.2).
The total energy will now be a decreasing function of time because of energy dissipated in
viscous damping, which over the time duration O to #; is

n f
Ep =/fD du =[ (cit)itdt:/ cu’ dt (2.3.6)

All the input energy will eventually get dissipated in viscous damping; as #; goes to 0o, the
dissipated energy, Eq. (2.3.6), tends to the input energy, Eq. (2.3.1).

2.4 COULOMB-DAMPED FREE VIBRATION

In Section 1.4 we mentioned that damping in actual structures is due to several energy-
dissipating mechanisms acting simultaneously, and a mathematically convenient approach
is to idealize them by equivalent viscous damping. Although this approach is sufficiently
accurate for practical analysis of most structures, it may not be appropriate when special
friction devices have been introduced in a building to reduce its vibrations during earth-
quakes. Currently, there is much interest in such application and we return to them in
Chapter 7. In this section the free vibration of systems under the presence of Coulomb
friction forces is analyzed.

Coulomb damping results from friction against sliding of two dry surfaces. The fric-
tion force F = uN, where u denotes the coefficients of static and kinetic friction, taken
to be equal, and N the normal force between the sliding surfaces. The friction force is
assumed to be independent of the velocity once the motion is initiated. The direction of the
friction force opposes motion, and the sign of the friction force will change when the direc-
tion of motion changes. This necessitates formulation and solution of two differential equa-
tions, one valid for motion in one direction and the other valid when motion is reversed.

Figure 2.4.1 shows a mass—spring system with the mass sliding against a dry surface,
and the free-body diagrams for the mass, including the inertia force, for two directions of

(a) (b) Direction of Motion (c) Direction of Motion
R <
7 '—«> u W W
Coefficient ‘ ‘
k of friction fi fi
m u ku <-— <'- ku <-— <'-

Z F=uN <—T— —T—> F=uN

N N

Figure 2.4.1
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motion. The equation governing the motion of the mass from right to left is

mii + ku = F 24.1
for which the solution is
u(t) = Ay cosw,t + By sinw,t + urp 2.4.2)
where ur = F /k. For motion of the mass from left to right, the governing equation is
mii +ku = —F (2.4.3)
for which the solution is
u(t) = Ay coswy,t + By sinw,t — ug 2.4.4)

The constants A;, By, A,, and B, depend on the initial conditions of each successive
half-cycle of motion; w, = +/k/m and the constant ur may be interpreted as the static
deformation of the spring due to friction force F. Each of the two differential equations is
linear, but the overall problem is nonlinear because the governing equation changes every
half-cycle of motion.

Let us study the motion of the system of Fig. 2.4.1 starting with some given initial
conditions and continuing until the motion ceases. At time ¢t = 0, the mass is displaced a
distance u(0) to the right and released from rest such that 1(0) = 0. For the first half-cycle
of motion, Eq. (2.4.2) applies with the constants A; and B; determined from the initial
conditions at t = 0:

AIZM(O)—MF Bl=0
Substituting these in Eq. (2.4.2) gives
u(t) = [u(0) —urlcosw,t + up 0<t<n/w, 24.5)

This is plotted in Fig. 2.4.2; it is a cosine function with amplitude = u(0) — ur and shifted
in the positive u direction by u . Equation (2.4.5) is valid until the velocity becomes zero
again att = w/w, = T, /2 (Fig. 2.4.2); at this instant # = —u(0) + 2uf.

Starting from this extreme left position, the mass moves to the right with its motion
described by Eq. (2.4.4). The constants A, and B, are determined from the conditions at
the beginning of this half-cycle:

AZZM(O)_?)MF B2=O
Substituting these in Eq. (2.4.4) gives
u(t) = [u(0) — 3uplcosw,t —ur w/w, <t <2m/w, (2.4.6)

This is plotted in Fig. 2.4.2; it is a cosine function with reduced amplitude = u(0) — 3ur
and shifted in the negative u direction by uy. Equation (2.4.6) is valid until the velocity
becomes zero again at t = 27 /w, = T, (Fig. 2.4.2); at this time instant # = u(0) — 4ur.

Att = 21 /w, the motion reverses and is described by Eq. (2.4.2), which after eval-
uating the constants A; and B; becomes

u(t) = [u(0) — Suplcosw,t + urg 27 /w, <t < 37/w, 2.4.7)
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Figure 2.4.2 Free vibration of a system with Coulomb friction.

This is a cosine function with its amplitude reduced further to u(0) — Sur and shifted, as
before, in the positive u direction by u .

The time taken for each half-cycle is 77 /w, and the duration of a full cycle, the natural
period of vibration, is

_27r

T, (2.4.8)

Wy
Observe that the natural period of a system with Coulomb damping is the same as for the
system without damping. In contrast, viscous damping had the effect of lengthening the
natural period [Eq. (2.2.6)].
In each cycle of motion, the amplitude is reduced by 4u r; that is, the displacements
u; and u; 4+ at successive maxima are related by

Uiy = u; — 4MF (249)

Thus the envelopes of the displacement—time curves are straight lines, as shown in Fig. 2.4.2,
instead of the exponential functions for systems with viscous damping.

When does the free vibration of a system with Coulomb friction stop? In each cycle
the amplitude is reduced by 4u . Motion stops at the end of the half-cycle for which the
amplitude is less than up. At that point the spring force acting on the mass is less than
the friction force, ku < F, and motion ceases. In Fig. 2.4.2 this occurs at the end of the
third cycle. The final rest position of the mass is displaced from its original equilibrium
position and represents a permanent deformation in which the friction force and spring
force are locked in. Shaking or tapping the system will usually jar it sufficiently to restore
equilibrium.

Damping in real structures must be due partly to Coulomb friction, since only this
mechanism can stop motion in free vibration. If the damping were purely viscous, motion
theoretically continues forever, although at infinitesimally small amplitudes. This is an
academic point, but it is basic to an understanding of damping mechanisms.

The various damping mechanisms that exist in real structures are rarely modeled
individually. In particular, the Coulomb frictional forces that must exist are not considered
explicitly unless frictional devices have been incorporated in the structure. Even with such
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devices it is possible to use equivalent viscous damping to obtain approximate results for
dynamic response (Chapter 3).

Example 2.8

A small building consists of four steel frames, each with a friction device, supporting a
reinforced-concrete slab, as shown schematically in Fig. E2.8a. The normal force across each
of the spring-loaded friction pads is adjusted to equal 2.5% of the slab weight (Fig. E2.8c).
A record of the building motion in free vibration along the x-axis is shown in Fig. E2.8d.
Determine the effective coefficient of friction.

Solution

1. Assumptions: (a) the weight of the frame is negligible compared to the slab.
(b) Energy dissipation due to mechanisms other than friction is negligible, a reasonable as-
sumption because the amplitude of motion decays linearly with time (Fig. E2.8d).

2. Determine T, and u .

T _4.5_05 2 _4
n—?—.SGC wn—ﬁ—rf
4uF=¥=0.6in. urp =0.15in.
(a) (b)
e Py
Brace P 0.0251w
12/
\ |~y
Friction
device B
16’
% %
© ()
64357
4 |
, I R O
b : T A Ao
* SR AR IR A IRV ARVT ARV ARVAR
R/C slab D IRV ARVERVARVERY
weight =w IERVERVI
L
l?l 6
Steel frame 0 1 2 3 4 5
1, sec

Figure E2.8
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3. Determine the coefficient of friction. The friction force along each brace is 1£(0.025w)
and its component in the lateral direction is (0.025uw) cos «v. The total friction force in the
lateral direction due to the four braces, two in each of the two frames, is

16
F =4(0.025puw) cosa = (0.1puw) <%> = 0.08puw

F o 0.08uw  0.08umg  0.08ug

TR T Tk k 2
2 2
= UF®) 0.15(4m) 0767
0.08g 0.08g
PROBLEMS

2.1 A heavy table is supported by flat steel legs (Fig. P2.1). Its natural period in lateral vibration
is 0.5 sec. When a 50-1b plate is clamped to its surface, the natural period in lateral vibration
is lengthened to 0.75 sec. What are the weight and the lateral stiffness of the table?

—

T, =0.5 sec T, =0.75 sec Figure P2.1

2.2 An electromagnet weighing 400 Ib and suspended by a spring having a stiffness of 100 Ib/in.
(Fig. P.2.2a) lifts 200 b of iron scrap (Fig. P2.2b). Determine the equation describing the
motion when the electric current is turned off and the scrap is dropped (Fig. P2.2c).

(a) (b) (c)

Figure P2.2
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2.3 A mass m is at rest, partially supported by a spring and partially by stops (Fig. P2.3). In
the position shown, the spring force is mg/2. At time + = 0 the stops are rotated, suddenly
releasing the mass. Determine the motion of the mass.

m

[e T $ L]
u

Figure P2.3

2.4  The weight of the wooden block shown in Fig. P2.4 is 10 Ib and the spring stiffness is 100
Ib/in. A bullet weighing 0.5 1b is fired at a speed of 60 ft/sec into the block and becomes
embedded in the block. Determine the resulting motion u(¢) of the block.

P
v()
.
m |
Z one) 4 Figure P2.4

2.5 A mass m; hangs from a spring k and is in static equilibrium. A second mass mj drops
through a height / and sticks to m| without rebound (Fig. P2.5). Determine the subsequent
motion u(¢) measured from the static equilibrium position of m and k.

Figure P2.5

2.6  The packaging for an instrument can be modeled as shown in Fig. P2.6, in which the instru-
ment of mass m is restrained by springs of total stiffness k inside a container; m = 10 Ib/g and
k = 50 1Ib/in. The container is accidentally dropped from a height of 3 ft above the ground.
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2.7

2.8

2.9

2.10

2.11

2.12

2.13

3’

7 7. Figure P2.6

Assuming that it does not bounce on contact, determine the maximum deformation of the
packaging within the box and the maximum acceleration of the instrument.

Consider a diver weighing 200 Ib at the end of a diving board that cantilevers out 3 ft. The
diver oscillates at a frequency of 2 Hz. What is the flexural rigidity E1 of the diving board?

Show that the motion of a critically damped system due to initial displacement #(0) and initial
velocity u(0) is

u(t) = {u0) + [2(0) + w,u(0)] 1} ="'

Show that the motion of an overcritically damped system due to initial displacement #(0) and
initial velocity u#(0) is

u(r) = e 5ot <A1e_“”l)’ —+ Age‘”,l)’>
where 0}, = w,/¢? — 1 and
—i(0) + (—; +¢2— 1) w,u(0)

A= 207,
1(0) + (; +4¢% - 1) wnu(0)
Az = 2a)’D

Derive the equation for the displacement response of a viscously damped SDF system due to
initial velocity #(0) for three cases: (a) underdamped systems; (b) critically damped systems;
and (c) overdamped systems. Plot u(¢) + 1(0)/w, against t /T, for ¢ = 0.1, 1, and 2.

For a system with damping ratio ¢, determine the number of free vibration cycles required to
reduce the displacement amplitude to 10% of the initial amplitude; the initial velocity is zero.

What is the ratio of successive amplitudes of vibration if the viscous damping ratio is known
tobe (a) ¢ = 0.01, (b) ¢ = 0.05, or (¢) ¢ = 0.25?

The supporting system of the tank of Example 2.6 is enlarged with the objective of increasing
its seismic resistance. The lateral stiffness of the modified system is double that of the original
system. If the damping coefficient is unaffected (this may not be a realistic assumption),
for the modified tank determine (a) the natural period of vibration 7},, and (b) the damping
ratio .
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2.14

2.15

2.16

217

2.18

2.19

2.20

Free Vibration Chap. 2

The vertical suspension system of an automobile is idealized as a viscously damped SDF sys-
tem. Under the 3000-1b weight of the car the suspension system deflects 2 in. The suspension
is designed to be critically damped.

(a) Calculate the damping and stiffness coefficients of the suspension.

(b) With four 160-1b passengers in the car, what is the effective damping ratio?

(c) Calculate the natural vibration frequency for case (b).

The stiffness and damping properties of a mass—spring—damper system are to be determined
by a free vibration test; the mass is given as m = 0.1 Ib-sec?/in. In this test the mass is
displaced 1 in. by a hydraulic jack and then suddenly released. At the end of 20 complete
cycles, the time is 3 sec and the amplitude is 0.2 in. Determine the stiffness and damping
coefficients.

A machine weighing 250 Ib is mounted on a supporting system consisting of four springs
and four dampers. The vertical deflection of the supporting system under the weight of the
machine is measured as 0.8 in. The dampers are designed to reduce the amplitude of vertical
vibration to one-eighth of the initial amplitude after two complete cycles of free vibration.
Find the following properties of the system: (a) undamped natural frequency, (b) damping
ratio, and (c¢) damped natural frequency. Comment on the effect of damping on the natural
frequency.

Determine the natural vibration period and damping ratio of the aluminum frame model
(Fig. 1.1.4a) from the acceleration record of its free vibration shown in Fig. 1.1.4b.

Show that the natural vibration frequency of the system in Fig. El.6a is w, = wp(l —
w/wer)1/2, where w, is the natural vibration frequency computed neglecting the action of
gravity, and w,, is the buckling weight.

An impulsive force applied to the roof slab of the building of Example 2.8 gives it an initial
velocity of 20 in./sec to the right. How far to the right will the slab move? What is the
maximum displacement of the slab on its return swing to the left?

An SDF system consisting of a weight, spring, and friction device is shown in Fig. P2.20.
This device slips at a force equal to 10% of the weight, and the natural vibration period of the
system is 0.25 sec. If this system is given an initial displacement of 2 in. and released, what
will be the displacement amplitude after six cycles? In how many cycles will the system come

to rest?
» ’—c> u
F=0.1w

/I
w
I —
k 00

Figure P2.20
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Response to Harmonic and
Periodic Excitations

PREVIEW

The response of SDF systems to harmonic excitation is a classical topic in structural dy-
namics, not only because such excitations are encountered in engineering systems (e.g.,
force due to unbalanced rotating machinery), but also because understanding the response
of structures to harmonic excitation provides insight into how the system will respond to
other types of forces. Furthermore, the theory of forced harmonic vibration has several
useful applications in earthquake engineering.

In Part A of this chapter the basic results for response of SDF systems to harmonic
force are presented, including the concepts of steady-state response, frequency-response
curve, and resonance. Applications of these results to experimental evaluation of the
natural vibration frequency and damping ratio of a structure, to isolation of vibration,
and to the design of vibration-measuring instruments is the subject of Part B; also in-
cluded is the concept of equivalent viscous damping. This concept is used in Part C to
obtain approximate solutions for the response of systems with rate-independent damp-
ing or Coulomb friction; these results are then shown to be good approximations to the
“exact” solutions. A procedure to determine the response of SDF systems to periodic
excitation is presented in Part D. A Fourier series representation of the excitation, com-
bined with the results for response to harmonic excitations, provides the desired proce-
dure.

65
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PART A: VISCOUSLY DAMPED SYSTEMS: BASIC RESULTS

3.1 HARMONIC VIBRATION OF UNDAMPED SYSTEMS

A harmonic force is p(t) = p, sin wt or p, cos wt, where p, is the amplitude or maximum
value of the force and its frequency w is called the exciting frequency or forcing frequency;
T = 27/w is the exciting period or forcing period (Fig. 3.1.1a). The response of SDF
systems to a sinusoidal force will be presented in some detail, along with only brief com-
ments on the response to a cosine force because the concepts involved are similar in the
two cases.

Setting p(t) = p, sinwt in Eq. (1.5.2) gives the differential equation governing the
forced harmonic vibration of the system, which for systems without damping specializes to

mii + ku = p, sin wt 3.1.1)

This equation is to be solved for the displacement or deformation u(¢) subject to the initial
conditions

u=u@©) =) (3.1.2)

where u(0) and u(0) are the displacement and velocity at the time instant the force is
applied. The particular solution to this differential equation is (see Derivation 3.1)

Po

Tm sin wt w # Wy (313)

up(t) =

The complementary solution of Eq. (3.1.1) is the free vibration response determined in
Eq. (d) of Derivation 2.1:

u.(t) = Acosw,t + Bsinw,t (3.1.4)

and the complete solution is the sum of the complementary and particular solutions:

: Po 1 .

t) = Acosw,t + Bsinw,t + — ——  sinwt 3.1.5

u(t) w,t + o, +k1—(w/w,,)2 1) ( )

The constants A and B are determined by imposing the initial conditions, Eq. (3.1.2), to
obtain the final result (see Derivation 3.1):

1 0 o n .
u(t) = u(0) cos w,t + |:Ma()n) _ %1 _“EL/:‘/)wn)z] sin wyt
transient
Po .
YRR t 3.1.6
K 1= (@/a) sin w ( a)

steady state
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Amplitude, p,

Period, T = 21/ ®

Total Response

Steady—state Response
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Figure 3.1.1 (a) Harmonic force; (b) response of undamped system to harmonic force; w/w, = 0.2,
u(0) = 0.5p,/k, and 1(0) = w, p, /k.

Equation (3.1.6a) has been plotted for w/w, = 0.2, u(0) = 0.5p,/k, and (0) = w, p,/k
as the solid line in Fig. 3.1.1. The sin wt term in this equation is the particular solution of
Eq. (3.1.3) and is shown by the dashed line.

Equation (3.1.6a) and Fig. 3.1.1 show that u(¢) contains two distinct vibration com-

ponents: (1) the sinwt term, giving an oscillation at the forcing or exciting frequency;
and (2) the sin w, and cos w,t terms, giving an oscillation at the natural frequency of the
system. The first of these is the forced vibration or steady-state vibration, for it is present
because of the applied force no matter what the initial conditions. The latter is the free
vibration or transient vibration, which depends on the initial displacement and velocity. It
exists even if #(0) = 1(0) = 0, in which case Eq. (3.1.6a) specializes to

. 1 . .
u@y=22— —  (sinwr — 2 sinw,t (3.1.6b)
k11— (w/w,)? wy
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The transient component is shown as the difference between the solid and dashed lines in
Fig. 3.1.1, where it is seen to continue forever. This is only an academic point because
the damping inevitably present in real systems makes the free vibration decay with time
(Section 3.2). It is for this reason that this component is called transient vibration.

The steady-state dynamic response, a sinusoidal oscillation at the forcing frequency,
may be expressed as

u(t) = (us)o [ } sin wt (3.1.7)

1 — (w/wy)?
Ignoring the dynamic effects signified by the acceleration term in Eq. (3.1.1) gives
the static deformation (indicated by the subscript “st”) at each instant:

o (1) = % sin wt (3.1.8)
The maximum value of the static deformation is
Po
(us)o = m (3.1.9)

which may be interpreted as the static deformation due to the amplitude p, of the force; for
brevity we will refer to (ug), as the static deformation. The factor in brackets in Eq. (3.1.7)
has been plotted in Fig. 3.1.2 against w/w,, the ratio of the forcing frequency to the natural
frequency. For w/w, < 1 or v < w, this factor is positive, indicating that u(¢) and p(¢)
have the same algebraic sign (i.e., when the force in Fig. 1.2.1a acts to the right, the system
would also be displaced to the right). The displacement is said to be in phase with the
applied force. For w/w, > 1 or @ > w, this factor is negative, indicating that u(¢) and

[1-(o/@,)?]!

0 1 2 3

Frequency ratio ® / @, Figure 3.1.2
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Phase angle ¢
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p(t) have opposing algebraic signs (i.e., when the force acts to the right, the system would
be displaced to the left). The displacement is said to be out of phase relative to the applied
force.

To describe this notion of phase mathematically, Eq. (3.1.7) is rewritten in terms of
the amplitude u,, of the vibratory displacement u(¢) and phase angle ¢:

u(t) = u, sin(wt — ¢) = (ug)o Ry sin(wt — ¢) (3.1.10)
where
Uo 1 0° w <o
Ra = = d ¢= " 3.1.11
= oy =@l M0 { 18° >, (3.1.1T)

For v < w,, » = 0°, implying that the displacement varies as sin w?, in phase with the
applied force. For > w,, ¢ = 180°, indicating that the displacement varies as —sin wt,
out of phase relative to the force. This phase angle is shown in Fig. 3.1.3 as a function of
the frequency ratio w/w,.

180°

\O
S
°

S
=)
(=) T

* . Figure 3.1.3 Deformation response factor
1 2
. and phase angle for an undamped system
Frequency ratio ©/ @, excited by harmonic force.
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The deformation (or displacement) response factor R, is the ratio of the amplitude
u, of the dynamic (or vibratory) deformation to the static deformation (uy),. Figure 3.1.3,
which shows Eq. (3.1.11a) for R, plotted as a function of the frequency ratio w/w,,, permits
several observations: If w/w, is small (i.e., the force is “slowly varying”), R, is only
slightly larger than 1 and the amplitude of the dynamic deformation is essentially the same
as the static deformation. If w/w, > V2 (i.e., w is higher than wnﬁ), R; < 1 and the
dynamic deformation amplitude is less than the static deformation. As w/w, increases
beyond V2, Ry becomes smaller and approaches zero as w/w, — 00, implying that the
vibratory deformation due to a “rapidly varying” force is very small. If w/w, is close to
1 (i.e., w is close to w,), R; is many times larger than 1, implying that the deformation
amplitude is much larger than the static deformation.

The resonant frequency is defined as the forcing frequency at which R; is maxi-
mum. For an undamped system the resonant frequency is w, and R, is unbounded at this
frequency. The vibratory deformation does not become unbounded immediately, however,
but gradually, as we demonstrate next.

If o = w,, the solution given by Eq. (3.1.6b) is no longer valid. In this case the
choice of the function C sin wt for a particular solution fails because it is also a part of the
complementary solution. The particular solution now is

(1) = —g—antcos ot 0=, (3.1.12)

and the complete solution for at-rest initial conditions, #(0) = #(0) = 0, is (see Deriva-
tion 3.2)

1 p, .
u(t) = —5%(%: COS Wyt — Sin w,1) (3.1.132)
or
t 1 (2mt 2rt 2wt
un Lt (I g 2 (3.1.13b)
(Ust)o 2\ T, T, T,
This result is plotted in Fig. 3.1.4, which shows that the time taken to complete one
cycle of vibration is 7,,. The local maxima of u(¢), which occur at t = (j — 1/2)T,,
arer(j — 1/2)(ug)o—j = 1, 2, 3, ...—and the local minima, which occur atr = jT,,
are —7 j(uy)o—j = 1, 2, 3, ....Ineach cycle the deformation amplitude increases by
. . np(}
[ujpr | — T uj |= (Usdolr (j+1) —mjl = e

The deformation amplitude grows indefinitely, but it becomes infinite only after an in-
finitely long time.

This is an academic result and should be interpreted appropriately for real structures.
As the deformation continues to increase, at some point in time the system would fail if
it is brittle. On the other hand, the system would yield if it is ductile, its stiffness would
decrease, and its “natural frequency” would no longer be equal to the forcing frequency,
and Eq. (3.1.13) or Fig. 3.1.4 would no longer be valid.
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Figure 3.1.4 Response of undamped system to sinusoidal force of frequency w = wy; u(0) =
1(0) = 0.

Derivation 3.1

The particular solution of Eq. (3.1.1), a linear second-order differential equation, is of the form
up(t) = Csinwt (a)

Differentiating this twice gives
iip (1) = —w*C sinwt (b)

Substituting Eqgs. (a) and (b) in the differential equation (3.1.1) leads to a solution for C:

_ P 1
= T @y ©

which is combined with Eq. (a) to obtain the particular solution presented in Eq. (3.1.3).
To determine the constants A and B in Eq. (3.1.5), it is differentiated:

Po

u(t) = —wy Asinw,t + w, B cos w,t + 3 mcoswt (d)
Evaluating Eqgs. (3.1.5) and (d) at ¢ = O gives
wO =A @ =wB+Po 2 ©
" k11— (w/wp)?
These two equations give
1(0
Acu@ B O _po_ ofon "

on k1= (w/wn)?

which are substituted in Eq. (3.1.5) to obtain Eq. (3.1.6a).
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Derivation 3.2

If ® = w,, the particular solution of Eq. (3.1.1) is of the form

up(t) = Ct cos wyt (a)
Substituting Eq. (a) in Eq. (3.1.1) and solving for C yields
C= —%wn (b)

which is combined with Eq. (a) to obtain the particular solution, Eq. (3.1.12).
Thus the complete solution is

u(t) = Acoswy,t + Bsinw,t — %wnt cos wyt (c)

and the corresponding velocity is

u(t) = —w, Asinwyt + w, B cos w,t — g—Za),, cos wyt + g—;wﬁt sin w, t (d)

Evaluating Egs. (c) and (d) at t = 0 and solving the resulting algebraic equations gives

0 | po
A=u(0 B = + —
“(©) PR
Specializing for at-rest initial conditions gives
Po
A=0 B=—
2k

which are substituted in Eq. (c) to obtain Eq. (3.1.13a) .

3.2 HARMONIC VIBRATION WITH VISCOUS DAMPING
3.2.1 Steady-State and Transient Responses

Including viscous damping the differential equation governing the response of SDF
systems to harmonic force is

mii + cu + ku = p, sin wt 3.2.1)
This equation is to be solved subject to the initial conditions
u = u(0) u = u(0) (3.2.2)
The particular solution of this differential equation is (from Derivation 3.3)
up(t) = Csinwt + D cos wt 3.2.3)
where
P 1 — (@/w,)?
k [1—(0/w,)?)? + [2¢(w/wy)]?
L [1—(w/ _);{w/in{( /@n)] (3.2.4)

Tk 1= @/0,)P + (2 (@/w,)P
The complementary solution of Eq. (3.2.1) is the free vibration response given by Eq. (f)
of Derivation 2.2:

uc(t) = et (A coswpt + Bsinwpt)
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where wp = w,+/1 — ¢2. The complete solution of Eq. (3.2.1) is

u(t) = e *“'(Acoswpt + Bsinwpt) + C sinwt + D cos wt (3.2.5)

transient steady state

where the constants A and B can be determined by standard procedures (e.g., see Deriva-
tion 3.1) in terms of the initial displacement #(0) and initial velocity #(0). As noted in
Section 3.1, u(¢) contains two distinct vibration components: forced vibration (excitation
frequency w terms) and free vibration (natural frequency w, terms).

Equation (3.2.5) is plotted in Fig. 3.2.1 for w/w, = 0.2, { = 0.05, u(0) = 0.5p, /k,
and u(0) = w, p,/k; the total response is shown by the solid line and the forced response
by the dashed line. The difference between the two is the free response, which decays
exponentially with time at a rate depending on w/w, and ¢; eventually, the free response
becomes negligible, hence we call it transient response; compare this with no decay for
undamped systems in Fig. 3.1.1. After awhile, essentially the forced response remains, and
we therefore call it steady-state response and focus on it for the rest of this chapter (after
Section 3.2.2). It should be recognized, however, that the largest deformation peak may
occur before the system has reached steady state; see Fig. 3.2.1.

29 Total Response
1A Steady—state Response
N
1\
~ 17 \ /
o
= \
=S
N
—1-
2
0 0.5 1 1.5 2

T

Figure 3.2.1 Response of damped system to harmonic force; w/w, = 0.2, { = 0.05,
u(0) = 0.5p,/k, and u(0) = w, p,/k.

Derivation 3.3

Dividing Eq. (3.2.1) by m gives
i+ 2 wuu + a)ﬁu iy ) sin wt (a)
m
The particular solution of Eq. (a) is of the form

up(t) = Csinwt + D cos wt (b)
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Substituting Eq. (b) and its first and second derivatives in Eq. (a) gives
[(@? — 0} C — 2t wawD]sinwt + [2{w,0C + (02 — w?) D] cos ot = 2 sinwt (c)
m

For Eq. (c) to be valid for all 7, the coefficients of the sine and cosine terms on the two sides
of the equation must be equal. This requirement gives two equations in C and D which, after
dividing by w,zl and using the relation k = w,zlm, become

2
[1—(3)}c—(2;ﬁ>0=& @
Wy [ k
w w 2
(2§—>C+|:1—<—>:|D:O (e)
Wp wp

Solving the two algebraic equations (d) and (e) leads to Eq. (3.2.4).
3.2.2 Response for w = wy

In this section we examine the role of damping in the rate at which steady-state response
is attained and in limiting the magnitude of this response when the forcing frequency is
the same as the natural frequency. For w = w,, Eq. (3.2.4) gives C = 0 and D =
—(ust)o/2¢; for = w, and zero initial conditions, the constants A and B in Eq. (3.2.5)
can be determined: A = (uy),/2¢ and B = (ug),/2+/1 — ¢2. With these solutions for A,
B, C,and D, Eq. (3.2.5) becomes

u(t) = (usl)oé |:e{“’”’ (COS wpt + \/1%742 sina)Dt> — Cos8 wnt:| (3.2.6)

This result is plotted in Fig. 3.2.2 for a system with ¢ = 0.05. A comparison of Fig. 3.2.2
for damped systems and Fig. 3.1.4 for undamped systems shows that damping lowers each
peak and limits the response to the bounded value:

_ (U500
= _Zé‘

For lightly damped systems the sinusoidal term in Eq. (3.2.6) is small and wp =~
w,; thus

(3.2.7)

o

u(t) ~ (”sl)a%(e_{w"t — 1) cosw,t (3.2.8)

envelope function

The deformation varies with time as a cosine function, with its amplitude increasing with
time according to the envelope function shown by dashed lines in Fig. 3.2.2.

The amplitude of the steady-state deformation of a system to a harmonic force with
® = w, and the rate at which steady state is attained is strongly influenced by damping.
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Figure 3.2.2 Response of damped system with { = 0.05 to sinusoidal force of frequency @ = w,;
u(0) =u(0) =0.
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Figure 3.2.3 Response of three systems—¢ = 0.01, 0.05, and 0.1—to sinusoidal force
of frequency @ = w,; u(0) = u(0) = 0.

The important influence of the damping ratio on the amplitude is seen in Fig. 3.2.3, where
Eq. (3.2.6) is plotted for three damping ratios: ¢ = 0.01, 0.05, and 0.1. To study how the
response builds up to steady state, we examine the peak u; after j cycles of vibration. A
relation between u; and j can be written by substituting t = j7,, in Eq. (3.2.8), setting
cos w,t = 1, and using Eq. (3.2.7) to obtain

L1y gromes (3.2.9)

Uo

This relation is plotted in Fig. 3.2.4 for ¢ = 0.01, 0.02, 0.05, 0.10, and 0.20. The discrete
points are joined by curves to identify trends, but only integer values of j are meaningful.
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Figure 3.2.4 Variation of response amplitude with number of cycles of harmonic force
with frequency o = w,.

The lighter the damping, the larger is the number of cycles required to reach a certain
percentage of u,, the steady-state amplitude. For example, the number of cycles required
to reach 95% of u, is 48 for ¢ = 0.01, 24 for ¢ = 0.02, 10 for ¢ = 0.05, 5 for ¢ = 0.10,
and 2 for ¢ = 0.20.

3.2.3 Maximum Deformation and Phase Lag
The steady-state deformation of the system due to harmonic force, described by Egs. (3.2.3)
and (3.2.4), can be rewritten as

u(t) = u, sin(wt — @) = (ug)o Ry sin(wt — @) (3.2.10)

where the response amplitude u, = +/C2 + D? and ¢ = tan~'(—D/C). Substituting for
C and D gives the deformation response factor:

u, 1

R; = = 3.2.11
¢ (Us)o \/[l — (a)/wn)2]2 + [2¢ (w/wn)]z ( :
_ o 2(w/wy)
¢ = tan —1 — (a)/a),,)z (3.2.12)

Equation (3.2.10) is plotted in Fig. 3.2.5 for three values of w/w, and a fixed value of
¢ = 0.20. The values of R; and ¢ computed from Egs. (3.2.11) and (3.2.12) are identified.
Also shown by dashed lines is the static deformation [Eq. (3.1.8)] due to p(¢), which varies
with time just as does the applied force, except for the constant k. The steady-state motion
is seen to occur at the forcing period T = 27 /w, but with a time lag = ¢/27; ¢ is called
the phase angle or phase lag.



Sec. 3.2 Harmonic Vibration with Viscous Damping 77

3 (@o/n,=05
24 Dynamic: u(?) / (ug),
. Ry =129 Static: uy (1) / (ug),
2o N\ N\ N
E /, A\ Y N //
14 P T — ~
| e 02m=0.041 T
2
3
34 bo/ow,=1 R; =25
2 -
~ 14
Ci Ve
=0
=

_2_/ 0/2m =025 \/ \/ \

-3 -
3 Cw/n,=2
2_
2 TN TN Re=02 TN
< 04— < L — \\/T\,\ \\/ >
= /
14 ~ \_// N s
0/2m = 0.46
24
-3_I T T T T T 1
0 1 2 3
t/ T

Figure 3.2.5 Steady-state response of damped systems (¢ = 0.2) to sinusoidal force for three values
of the frequency ratio: (a) w/w, = 0.5, (b) w/w, = 1, (¢) w/w, = 2.
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Figure 3.2.6 Deformation response factor and phase angle for a damped system excited
by harmonic force.

A plot of the amplitude of a response quantity against the excitation frequency is
called a frequency-response curve. Such a plot for deformation u is given by Fig. 3.2.6,
wherein the deformation response factor R, [from Eq. (3.2.11)] is plotted as a function
of w/w, for a few values of ¢; all the curves are below the { = 0 curve in Fig. 3.1.3.
Damping reduces R; and hence the deformation amplitude at all excitation frequencies.
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The magnitude of this reduction is strongly dependent on the excitation frequency and is
examined next for three regions of the excitation-frequency scale:

1. If the frequency ratio w/w, < 1 (i.e., T > T,, implying that the force is “slowly
varying”), R is only slightly larger than 1 and is essentially independent of damping. Thus
Po

Uy = (Us)g = —

k

This result implies that the amplitude of dynamic response is essentially the same as the
static deformation and is controlled by the stiffness of the system.

(3.2.13)

2. f w/w, > 1 (.e., T <K Tn, implying that the force is “rapidly varying”), R,
tends to zero as w/w, increases and is essentially unaffected by damping. For large values
of w/w,, the (w/w,)* term is dominant in Eq. (3.2.11), which can be approximated by

2
, Po

Uy = (ust)ow_; = mw?

(3.2.14)

This result implies that the response is controlled by the mass of the system.

3. If w/w, >~ 1 (i.e., the forcing frequency is close to the natural frequency of the
system), R; is very sensitive to damping and, for the smaller damping values, R; can be
several times larger than 1, implying that the amplitude of dynamic response can be much
larger than the static deformation. If ® = w,, Eq. (3.2.11) gives

(U)o Po
[,[0 = =
2¢ cwy

(3.2.15)

This result implies that the response is controlled by the damping of the system.

The phase angle ¢, which defines the time by which the response lags behind the
force, varies with w/w, as shown in Fig. 3.2.6. It is examined next for the same three
regions of the excitation-frequency scale:

1. f w/w, K 1 (i.e., the force is “slowly varying”), ¢ is close to 0° and the dis-
placement is essentially in phase with the applied force, as in Fig. 3.2.5a. When the force
in Fig. 1.2.1a acts to the right, the system would also be displaced to the right.

2. If w/w, > 1 (i.e., the force is “rapidly varying”), ¢ is close to 180° and the
displacement is essentially of opposite phase relative to the applied force, as in Fig. 3.2.5¢.
When the force acts to the right, the system would be displaced to the left.

3. Ifw/w, = 1(i.e., the forcing frequency is equal to the natural frequency), ¢ = 90°
for all values of ¢, and the displacement attains its peaks when the force passes through
zeros, as in Fig. 3.2.5b.

Example 3.1

The displacement amplitude u,, of an SDF system due to harmonic force is known for two
excitation frequencies. At w = wy, U, = Sin.; at @ = Swy, u, = 0.02 in. Estimate the
damping ratio of the system.
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Solution At w = w,, from Eq. (3.2.15),
1

Uo = (usl)oi =5 (a)
At w = Sw,, from Eq. (3.2.14),
1 (ust)o
>~ (Ug)g————= = =0.02 b
Up (ust)o (a)/wn)z 25 (b)

From Eq. (b), (ug), = 0.5 in. Substituting in Eq. (a) gives ¢ = 0.05.
3.2.4 Dynamic Response Factors

In this section we introduce deformation (or displacement), velocity, and acceleration
response factors that are dimensionless and define the amplitude of these three response
quantities. The steady-state displacement of Eq. (3.2.10) is repeated for convenience:

u(t)
Polk

where the deformation response factor R, is the ratio of the amplitude u, of the dynamic
(or vibratory) deformation to the static deformation (ug),; see Eq. (3.2.11).
Differentiating Eq. (3.2.16) gives an equation for the velocity response:

u(t)
Po/km

where the velocity response factor R, is related to R, by

= Ry sin(wt — ¢) (3.2.16)

= R, cos(ot — &) (3.2.17)

R, = 2R, (3.2.18)

n

Differentiating Eq. (3.2.17) gives an equation for the acceleration response:

.
W0 _ R, sinwr — ) (3.2.19)
Po/m
where the acceleration response factor R, is related to R; by
2
1)
R, = (—) Ry (3.2.20)
Wy

Observe from Eq. (3.2.19) that R, is the ratio of the amplitude of the vibratory acceleration
to the acceleration due to force p, acting on the mass.

The dynamic response factors Ry, R,, and R, are plotted as functions of w/w, in
Fig. 3.2.7. The plots of R, and R, are new, but the one for R; is the same as that in
Fig. 3.2.6. The deformation response factor R, is unity at w/w, = 0, peaks at w/w, < 1,
and approaches zero as w/w, — oo. The velocity response factor R, is zero at w/w, = 0,
peaks at w/w, = 1, and approaches zero as w/w, — 0o. The acceleration response factor
R, is zero at w/w, = 0, peaks at w/w, > 1, and approaches unity as w/w, — oo. For
¢ >1/v/2no peak occurs for R; and R,.
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Figure 3.2.7 Deformation, velocity, and acceleration response factors for a damped
system excited by harmonic force.
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(©)
(3.2.21)

make it possible to present all three factors in a single graph. The R,—w/w, data in the
linear plot of Fig. 3.2.7b are replotted as shown in Fig. 3.2.8 on four-way logarithmic
graph paper. The R; and R, values can be read from the diagonally oriented logarithmic
scales that are different from the vertical scale for R,. This compact presentation makes it
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Figure 3.2.8 Four-way logarithmic plot of deformation, velocity, and acceleration
response factors for a damped system excited by harmonic force.

Chap. 3

possible to replace the three linear plots of Fig. 3.2.7 by a single plot. The concepts under-
lying construction of this four-way logarithmic graph paper are presented in Appendix 3.

3.2.5 Resonant Frequencies and Resonant Responses

A resonant frequency is defined as the forcing frequency at which the largest response
amplitude occurs. Figure 3.2.7 shows that the peaks in the frequency-response curves
for displacement, velocity, and acceleration occur at slightly different frequencies. These
resonant frequencies can be determined by setting to zero the first derivative of Ry, R,, and
R, with respect to w/w,; for ¢ < 1/+/2 they are:

Displacement resonant frequency:
Velocity resonant frequency:
Acceleration resonant frequency:

wy/1 — 202

N
wy ++/1—2¢2

For an undamped system the three resonant frequencies are identical and equal to the

natural frequency w, of the system. Intuition might suggest that the resonant frequencies
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for a damped system should be at its natural frequency wp = w,+/1 — 2, but this does not
happen; the difference is small, however. For the degree of damping usually embodied in
structures, typically well below 20%, the differences among the three resonant frequencies
and the natural frequency are small.

The three dynamic response factors at their respective resonant frequencies are

1 1
Rob=— Rj=— (3.2.22)

1
Rjy=—F+— v a
! 2¢/1 —¢2 2z 2¢/1 —¢2
3.2.6 Half-Power Bandwidth

An important property of the frequency response curve for R, is shown in Fig. 3.2.9, where
the half-power bandwidth is defined. If w, and w;, are the forcing frequencies on either side

Resonant amplitude

Deformation response factor Ry

2 = Half-power bandwidth

(l/\/f) Resonant amplitude

Frequency ratio ® / ®,

Figure 3.2.9 Definition of half-power bandwidth.

of the resonant frequency at which the amplitude u,, is 1/+/2 times the resonant amplitude,
then for small ¢
wp — Wq
— =2 (3.2.23)

wy
This result, derived in Derivation 3.4, can be rewritten as

§=wb_wa or szb_fa

3.2.24
2(,(),1 2fn ( )
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where f = w/2m is the cyclic frequency. This important result enables evaluation of dam-
ping from forced vibration tests without knowing the applied force (Section 3.4).

Derivation 3.4

Equating R; from Eq. (3.2.11) and l/ﬁ times the resonant amplitude of R; given by
Eq. (3.2.22), by definition, the forcing frequencies w, and w, satisfy the condition

1 1 1
\/ [1 - @/on2 + e @fwnp Y22V1-¢2

Inverting both sides, squaring them, and rearranging terms gives

4 2
(ﬁ> —2(1-2¢% (3> +1-82(1-¢H =0 (b)
wy Wy

Equation (b) is a quadratic equation in (w/wj)2, the roots of which are

2
(3) =(1-2H=x2u/1-¢2 ©

wp

(a)

where the positive sign gives the larger root wj, and the negative sign corresponds to the smaller
root wy.

For the small damping ratios representative of practical structures, the two terms con-
taining ¢2 can be dropped and

2~ +20)? )
Wp
Taking only the first term in the Taylor series expansion of the right side gives
®
— ~1+¢ (e)
Wn

Subtracting the smaller root from the larger one gives

220 o )

Wp

3.2.7 Steady-State Response to Cosine Force

The differential equation to be solved is
mii + cu + ku = p, cos wt (3.2.25)

The particular solution given by Eq. (3.2.3) still applies, but in this case the constants C
and D are

c_Po 22 (0/wp)
k1= (/@] + [2¢ (/)]
5 (3.2.26)
o 1 — (/@)

k1= /o)) + 12¢ /o)
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These are determined by the procedure of Derivation 3.3. The steady-state response given
by Egs. (3.2.3) and (3.2.26) can be expressed as

u(t) = u,cos(wt — @) = (ug), Ry cos(wt — ¢) (3.2.27)

where the amplitude u,,, the deformation response factor R;, and the phase angle ¢ are the
same as those derived in Section 3.2.3 for a sinusoidal force. This similarity in the steady-
state responses to the two harmonic forces is not surprising since the two excitations are
the same except for a time shift.

PART B: VISCOUSLY DAMPED SYSTEMS: APPLICATIONS

3.3 RESPONSE TO VIBRATION GENERATOR

Vibration generators (or shaking machines) were developed to provide a source of har-
monic excitation appropriate for testing full-scale structures. In this section theoreti-
cal results for the steady-state response of an SDF system to a harmonic force caused
by a vibration generator are presented. These results provide a basis for evalua-
ting the natural frequency and damping of a structure from experimental data
(Section 3.4).

3.3.1 Vibration Generator

Figure 3.3.1 shows a vibration generator having the form of two flat baskets rotating in
opposite directions about a vertical axis. By placing various numbers of lead weights in
the baskets, the magnitudes of the rotating weights can be altered. The two counterrotat-
ing masses, m, /2, are shown schematically in Fig. 3.3.2 as lumped masses with eccentri-
city = e; their locations at t+ = 0 are shown in (a) and at some time ¢ in (b). The x-
components of the inertia forces of the rotating masses cancel out, and the y-components
combine to produce a force

p(t) = (meew®) sinwt (3.3.1)

By bolting the vibration generator to the structure to be excited, this force can be transmit-
ted to the structure. The amplitude of this harmonic force is proportional to the square of
the excitation frequency w. Therefore, it is difficult to generate force at low frequencies
and impractical to obtain the static response of a structure.

3.3.2 Structural Response

Assuming that the eccentric mass m, is small compared to the mass m of the structure, the
equation governing the motion of an SDF system excited by a vibration generator is

mii + cu + ku = (meea)z) sin wt 3.3.2)
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Figure 3.3.1 Counterrotating eccentric weight vibration generator.

The amplitudes of steady-state displacement and of steady-state acceleration of the SDF

system are given by the maximum values of Eqgs. (3.2.16) and (3.2.19) with p, = m.ew”.

Thus

2

mee , mee [ 2
Uy, = w Rd = — | — Rd (333)
k m \w,
2 2
. mee , meew; (
U, = w°R, = — ] R, 3.3.4)
m m wy

m,ew*/2

m,em*/2

m, 2 (D/
O
\

+—+ p() = (meeu)z) sin ¢
(@) (b)

Figure 3.3.2 Vibration generator: (a) initial position; (b) position and forces at time 7.



Sec. 3.4 Natural Frequency and Damping from Harmonic Tests 87

10

8 £=0.01

meew?, / m

> b /0.2
0 _~ s | .

0 1 2 3
Frequency ratio ® / o,

Figure 3.3.3

The acceleration amplitude of Eq. (3.3.4) is plotted as a function of the frequency ratio
w/w, in Fig. 3.3.3. For forcing frequencies w greater than the natural frequency w, of the
system, the acceleration increases rapidly with increasing @ because the amplitude of the
exciting force, Eq. (3.3.1), is proportional to w?.

3.4 NATURAL FREQUENCY AND DAMPING FROM
HARMONIC TESTS

The theory of forced harmonic vibration, presented in the preceding sections of this chap-
ter, provides a basis to determine the natural frequency and damping of a structure from
its measured response to a vibration generator. The measured damping provides data for
an important structural property that cannot be computed from the design of the structure.
The measured value of the natural frequency is the “actual” property of a structure against
which values computed from the stiffness and mass properties of structural idealizations
can be compared. Such research investigations have led to better procedures for developing
structural idealizations that are representative of actual structures.

3.4.1 Resonance Testing

The concept of resonance testing is based on the result of Eq. (3.2.15), rewritten as

_ 1 (st)o
2 (o) w=0,
The damping ratio ¢ is calculated from experimentally determined values of (uy), and of

u, at forcing frequency equal to the natural frequency of the system.Jr Usually, the accel-
eration amplitude is measured and u, = ii,/w*. This seems straightforward except that
the true value w, of the natural frequency is unknown. The natural frequency is detected

¢ (3.4.1)

JrStrictly speaking, this is not the resonant frequency; see Section 3.2.5.
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experimentally by utilizing the earlier result that the phase angle is 90° if = w,,. Thus the
structure is excited at forcing frequency w, the phase angle is measured, and the exciting
frequency is adjusted progressively until the phase angle is 90°.

If the displacement due to static force p,—the amplitude of the harmonic force—
can be obtained, Eq. (3.4.1) provides the damping ratio. As mentioned earlier, it is difficult
for a vibration generator to produce a force at low frequencies and impractical to obtain
a significant static force. An alternative is to measure the static response by some other
means, such as by pulling on the structure. In this case, Eq. (3.4.1) should be modified to
recognize any differences in the force applied in the static test relative to the amplitude of
the harmonic force.

3.4.2 Frequency-Response Curve

Because of the difficulty in obtaining the static structural response using a vibration gener-
ator, the natural frequency and damping ratio of a structure are usually determined by ob-
taining the frequency-response curve experimentally. The vibration generator is operated
at a selected frequency, the structural response is observed until the transient part damps
out, and the amplitude of the steady-state acceleration is measured. The frequency of the
vibration generator is adjusted to a new value and the measurements are repeated. The
forcing frequency is varied over a range that includes the natural frequency of the system.
A frequency-response curve in the form of acceleration amplitude versus frequency may
be plotted directly from the measured data. This curve is for a force with amplitude propor-
tional to w? and would resemble the frequency-response curve of Fig. 3.3.3. If each mea-
sured acceleration amplitude is divided by »?, we obtain the frequency—acceleration curve

r]’ES

Tres | \2

Response amplitude

I

f a f b
Forcing frequency f

Figure 3.4.1 Evaluating damping from frequency-response curve.
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for a constant-amplitude force. This curve from measured data would resemble a curve
in Fig. 3.2.7c. If the measured accelerations are divided by w*, the resulting frequency—
displacement curve for a constant-amplitude force would be an experimental version of the
curve in Fig. 3.2.7a.

The natural frequency and damping ratio can be determined from any one of the
experimentally obtained versions of the frequency-response curves of Figs. 3.3.3, 3.2.7c,
and 3.2.7a. For the practical range of damping the natural frequency f, is essentially equal
to the forcing frequency at resonance. The damping ratio is calculated by Eq. (3.2.24) us-
ing the frequencies f, and f5, determined, as illustrated in Fig. 3.4.1, from the experimen-
tal curve shown schematically. Although this equation was derived from the frequency—
displacement curve for a constant-amplitude harmonic force, it is approximately valid for
the other response curves mentioned earlier as long as the structure is lightly damped.

Example 3.2

The plexiglass frame of Fig. 1.1.4 is mounted on a shaking table that can apply harmonic base
motions of specified frequencies and amplitudes. At each excitation frequency w, acceleration
amplitudes iig, and iil, of the table and the top of the frame, respectively, are recorded. The
transmissibility TR = ii, /ii,, is compiled and the data are plotted in Fig. E3.2. Determine the
natural frequency and damping ratio of the plexiglass frame from these data.

Solution The peak of the frequency-response curve occurs at 3.59 Hz. Assuming that the
damping is small, the natural frequency f,, = 3.59 Hz.

The peak value of the transmissibility curve is 12.8. Now draw a horizontal line at
12.8/+/2 = 9.05 as shown. This line intersects the frequency-response curve at f;, = 3.74 Hz
and f, = 3.44 Hz. Therefore, from Eq. (3.2.24),

_374-344 0.042 — 429
$= TaGasg VR EAAR
14
12.8
12 4
> 10
E 9.05
Z 84 / \o
E
s 6
&
E
4 -
) f,=3.59
f,=3.44 f,=3.74
O T T T T : T T T : T T 1
3.0 32 34 3.6 3.8 4.0
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Figure E3.2
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This damping value is slightly higher than the 3.96% determined from a free vibration test on
the model (Example 2.5).

Note that we have used Eq. (3.2.24) to determine the damping ratio of the system from
its transmissibility (TR) curve, whereas this equation had been derived from the frequency—
displacement curve. This approximation is appropriate because at excitation frequencies in
the range f, to fj, the numerical values of TR and R, are close; this is left for the reader to
verify after an equation for TR is presented in Section 3.6.

3.5 FORCE TRANSMISSION AND VIBRATION ISOLATION

Consider the mass—spring—damper system shown in the left inset in Fig. 3.5.1 subjected to
a harmonic force. The force transmitted to the base is

Sr = fs+ fp =ku(t) + cu(t) (3.5.1)

100

W
o

p(t) = po sin ¢

—_
o

= (fT)a/p0= ﬁé/ﬁga

Transmissibility (TR)

0.5

0.1
0.1

Frequency ratio ® / ®,

Figure 3.5.1 Transmissibility for harmonic excitation. Force transmissibility and ground
motion transmissibility are identical.
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Substituting Eq. (3.2.10) for u(¢) and Eq. (3.2.17) for #(¢) and using Eq. (3.2.18) gives
fr(t) = (ug)o Ry [k sin(wt — @) + cw cos(wt — ¢p)] 3.5.2)
The maximum value of f7(¢) over ¢ is

(fT)o == (ust)oRd\/m

which, after using (us), = p,/k and { = c¢/2mw,, can be expressed as

2
(fT)o — Rd 1+ <2€_£>
Po Wy

Substituting Eq. (3.2.11) for R, gives an equation for the ratio of the maximum transmitted
force to the amplitude p, of the applied force, known as the transmissibility (TR) of the
system:

_ { 1+ [2¢ /@) }” ’
[1 = (@/@0)?P + [2¢ (@] )

Note that if the spring is rigid, w, = 3 oc and TR = 1, implying that (f7)o = po.

The transmissibility is plotted in Fig. 3.5.1 as a function of the frequency ratio w/w,
for several values of the damping ratio ¢. Logarithmic scales have been chosen to highlight
the curves for large w/w,, the region of interest. While damping decreases the amplitude of
motion at all excitation frequencies (Fig. 3.2.6), damping decreases the transmitted force
only if w/w, < ~/2. For the transmitted force to be less than the applied force, i.e.,
TR < 1, the stiffness of the support system and hence the natural frequency should be
small enough so that w/w, > V2. No damping is desired in the support system because,
in this frequency range, damping increases the transmitted force. This implies a trade-off
between a soft spring to reduce the transmitted force and an acceptable static displacement.

If the applied force arises from a rotating machine, its frequency will vary as it starts
to rotate and increases its speed to reach the operating frequency. In this case the choice of
a flexible support system to minimize the transmitted force must be a compromise. It must
have sufficient damping to limit the force transmitted while passing through resonance,
but not enough to add significantly to the force transmitted at operating speeds. Luckily,
natural rubber is a very satisfactory material and is often used for the isolation of vibration.

(3.5.3)

3.6 RESPONSE TO GROUND MOTION AND VIBRATION ISOLATION

In this section we determine the response of an SDF system (see the right inset in Fig. 3.5.1)
to harmonic ground motion:

li (1) = iigp sin w1 (3.6.1)

For this excitation the governing equation is Eq. (1.7.4), where the forcing function is
Dei(t) = —miig(t) = —miig, sinwt, the same as Eq. (3.2.1) for an applied harmonic force
with p, replaced by —miiz,. Making this substitution in Eqgs. (3.1.9) and (3.2.10) gives

—Mil gy

u(t) =

Ry sin(wt — ¢) (3.6.2)
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The acceleration of the mass is
i'(t) = lig (1) +1(t) (3.6.3)

Substituting Eq. (3.6.1) and the second derivative of Eq. (3.6.2) gives an equation for i’ (¢)
from which the amplitude or maximum value i/ can be determined (see Derivation 3.5):

TR =

1+ [2¢ (@/wn)]? v
o {[ clofon } (3.6.4)

1= (@/@,)?] + 120 (@]

The ratio of acceleration ii!, transmitted to the mass and amplitude ii ,, of ground accelera-
tion is also known as the transmissibility (TR) of the system. From Eqs. (3.6.4) and (3.5.3)
it is clear that the transmissibility for the ground excitation problem is the same as for the
applied force problem.

Therefore, Fig. 3.5.1 also gives the ratio i /iy, as a function of the frequency ratio
w/w,. If the excitation frequency w is much smaller than the natural frequency w, of the
system, ii’, > ii 4, (i.e., the mass moves rigidly with the ground, both undergoing the same
acceleration). If the excitation frequency w is much higher than the natural frequency w, of
the system, ii!, 2~ 0 (i.e., the mass stays still while the ground beneath it moves). This is the
basic concept underlying isolation of a mass from a moving base by using a very flexible
support system. For example, buildings have been mounted on natural rubber bearings to
isolate them from ground-borne vertical vibration—typically with frequencies that range
from 25 to 50 Hz—due to rail traffic.

Before closing this section, we mention without derivation the results of a related
problem. If the ground motion is defined as u4(f) = ug, sinwt, it can be shown that the
amplitude u, of the total displacement u'(¢) of the mass is given by

Ugo

’ 1+ [2¢ (@/wn)]? v
%o {[ (/e } (3.6.5)

TR = = 5 5
1 - (w/wn)z] + [2§ (a)/wn)]

Ugo
Comparing this with Eq. (3.6.4) indicates that the transmissibility for displacements and
accelerations is identical.

Example 3.3

A sensitive instrument with weight 100 1b is to be installed at a location where the vertical
acceleration is 0.1g at a frequency of 10 Hz. This instrument is mounted on a rubber pad of
stiffness 80 1b/in. and damping such that the damping ratio for the system is 10%. (a) What
acceleration is transmitted to the instrument? (b) If the instrument can tolerate only an accel-
eration of 0.005g, suggest a solution assuming that the same rubber pad is to be used. Provide
numerical results.

Solution (a) Determine TR.

wy = L = 17.58 rad/sec
100/386

27 (1
o _ 2149 _ 4o
o 1758
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Substituting these in Eq. (3.6.4) gives

o >
TR:?_(,:\/ 1+ [2(0.1)(3.575)] oo
ligo [1 — (3.575)2]2 + [2(0.1)(3.575)]?

Therefore, i}, = (0.104)iig, = (0.104)0.1g = 0.01g.

(b) Determine the added mass to reduce acceleration. The acceleration transmitted can
be reduced by increasing w/w,, which requires reducing w, by mounting the instrument on
mass mp. Suppose that we add a mass mj; = 150 1b/g; the total mass = 250 1b/g, and

/ 80 1111 rad/sec > =5.655
" =\ 250,386 s

To determine the damping ratio for the system with added mass, we need the damping coeffi-
cient for the rubber pad:

100
c={(2mwy) =0.1(2) <%> 17.58 = 0.911 Ib-sec/in.

Then

B c B 0.911 B
T 2m4mp)wl,  2(250/386)11.11

¢’ 0.063
Substituting for w/wj;, and ¢ in Eq. (3.6.4) gives ii! /iigo = 0.04, iil, = 0.004g, which is
satisfactory because it is less than 0.005g.

Instead of selecting an added mass by judgment, it is possible to set up a quadratic
equation for the unknown mass, which will give !, = 0.005g.

Example 3.4

An automobile is traveling along a multispan elevated roadway supported every 100 ft. Long-
term creep has resulted in a 6-in. deflection at the middle of each span (Fig. E3.4a). The
roadway profile can be approximated as sinusoidal with an amplitude of 3 in. and a period
of 100 ft. The SDF system shown is a simple idealization of an automobile, appropriate for a
“first approximation” study of the ride quality of the vehicle. When fully loaded, the weight of
the automobile is 4 kips. The stiffness of the automobile suspension system is 800 1b/in., and
its viscous damping coefficient is such that the damping ratio of the system is 40%. Determine

(@) (b)

3 g w
k ¢

Ug

]

100 ’ 100

——
——
——

Figure E3.4
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(@) the amplitude u’, of vertical motion u’ (1) when the automobile is traveling at 40 mph, and
(b) the speed of the vehicle that would produce a resonant condition for ! .

Solution Assuming that the tires are infinitely stiff and they remain in contact with the road,
the problem can be idealized as shown in Fig. E3.4b. The vertical displacement of the tires is
ug(t) = ugy sinwt, where ug, = 3 in. The forcing frequency w = 27 /T, where the forcing
period T = L /v, the time taken by the automobile to cross the span; therefore, w = 2mwv/L.
(@) Determine u’,.

27 (58.67)

0=————
100

y k 800 8.786 rad/ @ —0.420
wy = —_—= —_— = 0. raa/sec — = L.
" m 4000/386 wn

Substituting these data in Eq. (3.6.5) gives

v = 40 mph = 58.67 ft/sec = 3.686 rad/sec

- 1+ [2(0.4)(0.420) ]2 v 56
ugo | [1 = (0.420)2]2 + [2(0.4)(0.420) 2 -

ul = 1.186u,4, = 1.186(3) = 3.56 in.

(b) Determine the speed at resonance. If ¢ were small, resonance would occur ap-
proximately at w/w, = 1. However, automobile suspensions have heavy damping, to reduce
vibration. In this case, { = 0.4, and for such large damping the resonant frequency is sig-
nificantly different from w,. By definition, resonance occurs for u’, when TR (or TR?) is
maximum over all . Substituting ¢ = 0.4 in Eq. (3.6.5) and introducing f = w/w, gives

5 14 0.64p2 14 0.64p2
TR” = =
(1 =282+ BH 406482 p*+—13682+1
d(TR)?
ap
Resonance occurs at this forcing frequency, which implies a speed of
oL (7.846)100
2r 2

=0= =0.893 = v =0.893w, = 0.893(8.786) = 7.846 rad/sec

= 124.9 ft/sec = 85 mph

Example 3.5

Repeat part (a) of Example 3.4 if the vehicle is empty (driver only) with a total weight of 3
kips.

Solution Since the damping coefficient ¢ does not change but the mass m does, we need to
recompute the damping ratio for an empty vehicle from

¢ =20p\kmy =280/ km,

where the subscripts f and e denote full and empty conditions, respectively. Thus

- 172 4\ 12
e=2¢r | — =04 = = 0.462
me 3
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For an empty vehicle

N k 800 10.15 rad/
w, = —_ = —_— = . rada/sec
" m 3000/386

o 3080363
w, 1015
Substituting for w/w, and ¢ in Eq. (3.6.5) gives
- 1+ [2(0.462)(0.363) 2 R
ugo | [1—(0.363)2]12 + [2(0.462)(0.363) ]2 o

ul = 1.133ug, = 1.133(3) = 3.40 in.

Derivation 3.5

Equation (3.6.2) is first rewritten as a linear combination of sine and cosine functions. This
can be accomplished by substituting Egs. (3.2.11) and (3.2.12) for the R, and ¢, respectively,
or by replacing p, in Eq. (3.2.4) with —miig, and substituting in Eq. (3.2.3). Either way the
relative displacement is

—miigy [[1 — (w/wy)*Isinwt — [2¢ (w/wy)] cos ot
u(n) = — : (@)
k [1 = (w/wn)*]* + [2¢ (0/wp)]

Differentiating this twice and substituting it in Eq. (3.6.3) together with Eq. (3.6.1) gives

i (1) = ligo (Cysinwt + Dy cos wt) (b)
where
1— 2 442 2 ) 3

¢, = L= @/ +482@/wn) D ¢ (@/wn) ©

T 1 = (@002 + [2¢ (@) wn) 12

iil, = iigo\/C? + D? (d)

This result, after substituting for C; and D; from Eq. (c) and some simplification, leads to
Eq. (3.6.4).

1= (@/0n)? P + [2¢ (0/wn) P
The acceleration amplitude is

3.7 VIBRATION-MEASURING INSTRUMENTS

Measurement of vibration is of great interest in many aspects of structural engineering.
For example, measurement of ground shaking during an earthquake provides basic data
for earthquake engineering, and records of the resulting motions of a structure provide
insight into how structures respond during earthquakes. Although measuring instruments
are highly developed and intricate, the basic element of these instruments is some form of
a transducer. In its simplest form a transducer is a mass—spring—damper system mounted
inside a rigid frame that is attached to the surface whose motion is to be measured. Fig-
ure 3.7.1 shows a schematic drawing of such an instrument to record the horizontal
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u (magnified)

> Uy(l)

Figure 3.7.1 Schematic drawing of a vibration-measuring instrument and recorded motion.

motion of a support point; three separate transducers are required to measure the three com-
ponents of motion. When subjected to motion of the support point, the transducer mass
moves relative to the frame, and this relative displacement is recorded after suitable mag-
nification. It is the objective of this brief presentation to discuss the principle underlying
the design of vibration-measuring instruments so that the measured relative displacement
provides the desired support motion—acceleration or displacement.

3.7.1 Measurement of Acceleration

The motion to be measured generally varies arbitrarily with time and may include many
harmonic components covering a wide range of frequencies. It is instructive, however, to
consider first the measurement of simple harmonic motion described by Eq. (3.6.1). The
displacement of the instrument mass relative to the moving frame is given by Eq. (3.6.2),

which can be rewritten as
1 ; o
u(t) = — —2Rd g\t —— 3.7.1)
(,()n w

The recorded u(t) is the base acceleration modified by a factor —R;/ a)ﬁ and recorded with
a time lag ¢/w. As shown in Fig. 3.2.6, R; and ¢ vary with the forcing frequency w, but
w? is an instrument constant independent of the support motion.

The object of the instrument design is to make R; and ¢/w as independent of excita-
tion frequency as possible because then each harmonic component of acceleration will be
recorded with the same modifying factor and the same time lag. Then, even if the motion to
be recorded consists of many harmonic components, the recorded u(#) will have the same
shape as the support motion with a constant shift of time. This constant time shift simply
moves the time scale a little, which is usually not important. According to Fig. 3.7.2 (which
is a magnified plot of Fig. 3.2.6 with additional damping values), if ¢ = 0.7, then over the
frequency range 0 < w/w, < 0.50, Ry is close to 1 (less than 2.5% error) and the variation
of ¢ with w is close to linear, implying that ¢/w is essentially constant. Thus an instru-
ment with a natural frequency of 50 Hz and a damping ratio of 0.7 has a useful frequency
range from O to 25 Hz with negligible error. These are the properties of modern, com-
mercially available instruments designed to measure earthquake-induced ground accelera-
tion. Because the measured amplitude of u(t) is proportional to R;/@?, a high-frequency
instrument will result in a very small displacement that is substantially magnified in these
instruments for proper measurement.
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Figure 3.7.2 Variation of R, and ¢ with frequency ratio w/w, for ¢ = 0.6, 0.65, 0.7,
and 0.75.

Figure 3.7.3 shows a comparison of the actual ground acceleration iig(t) =
0.1gsin 27 ft and the measured relative displacement of Ryiiy(f — ¢/w), except for the
instrument constant —1/w? in Eq. (3.7.1). For excitation frequencies f = 20 and 10 Hz,
the measured motion has accurate amplitude, but the error at f = 40 Hz is noticeable; and
the time shift, although not identical for the three frequencies, is similar. If the ground ac-
celeration is the sum of the three harmonic components, this figure shows that the recorded
motion matches the ground acceleration in amplitude and shape reasonably well but not
perfectly.

The accuracy of the recorded motion u(¢) can be improved by separating u(¢) into its
harmonic components and correcting one component at a time, by calculating i, (t — ¢/w)
from the measured u(¢) using Eq. (3.7.1) with R; determined from Eq. (3.2.11) and known
instrument properties w, and ¢. Such corrections are repeated for each harmonic compo-
nent in u(t), and the corrected components are then synthesized to obtain ii,(f). These
computations can be carried out by discrete Fourier transform procedures, which are intro-
duced in Appendix A.
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Actual: ii,(1) Measured: R ii,(1 - 0/®)
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Figure 3.7.3 Comparison of actual ground acceleration and measured motion by an
instrument with f, = 50 Hzand ¢ = 0.7.

3.7.2 Measurement of Displacement

It is desired to design the transducer so that the relative displacement u(#) measures the
support displacement u, (7). This is achieved by making the transducer spring so flexible
or the transducer mass so large, or both, that the mass stays still while the support beneath
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it moves. Such an instrument is unwieldy because of the heavy mass and soft spring, and
because it must accommodate the anticipated support displacement, which may be as large
as 36 in. during earthquakes.

To examine the basic concept further, consider harmonic support displacement

Ug(t) = Ug, sSinwt (3.7.2)

With the forcing function peg(t) = —mii (1) = mwzug,, sinwt, Eq. (1.7.4) governs the
relative displacement of the mass; this governing equation is the same as Eq. (3.2.1) for
applied harmonic force with p, replaced by mw?u,,. Making this substitution in
Eq. (3.2.10) and using Egs. (3.1.9) and (3.2.20) gives

u(t) = Ry, sin(wt — @) (3.7.3)

For excitation frequencies @ much higher than the natural frequency w,, R, is close to
unity (Fig. 3.2.7c) and ¢ is close to 180°, and Eq. (3.7.3) becomes

u(t) = —ug, Sinwt (3.7.4)

This recorded displacement is the same as the support displacement [Eq. (3.7.2)] except
for the negative sign, which is usually inconsequential. Damping of the instrument is not
a critical parameter because it has little effect on the recorded motion if w/w, is very
large.

3.8 ENERGY DISSIPATED IN VISCOUS DAMPING

Consider the steady-state motion of an SDF system due to p(f) = p, sinwt. The energy
dissipated by viscous damping in one cycle of harmonic vibration is

21 /w 21 /w
Ep =/fDdu =/ (cu)udz=/ cu? dt
0 0

21 /w
- c/ [wu, cos(t — )P dt = wewu® = 2mE —ku? (3.8.1)
0 Wy

The energy dissipated is proportional to the square of the amplitude of motion. It
is not a constant value for any given amount of damping and amplitude since the energy
dissipated increases linearly with excitation frequency.

In steady-state vibration, the energy input to the system due to the applied force is
dissipated in viscous damping. The external force p(f) inputs energy to the system, which
for each cycle of vibration is

21 /w
E, = /p(t) du :/ ptu dt
0

21 /w
= / [po sinwt][wu, cos(wt — ¢)] dt = 7 p,u, sin ¢ (3.8.2)
0
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Utilizing Eq. (3.2.12) for phase angle, this equation can be rewritten as (see Derivation 3.6)
E; =210 2 ki (3.8.3)
Wy

Equations (3.8.1) and (3.8.3) indicate that E; = Ep.

What about the potential energy and kinetic energy? Over each cycle of harmonic
vibration the changes in potential energy (equal to the strain energy of the spring) and
kinetic energy are zero. This can be confirmed as follows:

27 /w
Eg = / fsdu = / (ku)u dt

0

21w
= / klu, sin(wt — ¢)][wu, cos(wt — )] dt =0
0
21w
Eszfl du:/ (mii)u dt
0

21 /w
= f m[—w’u, sin(wt — ¢)[wu, cos(wt — ¢)] dt =0
0

The preceding energy concepts help explain the growth of the displacement ampli-
tude caused by harmonic force with @ = w, until steady state is attained (Fig. 3.2.2). For
o = wy,, » = 90° and Eq. (3.8.2) gives

E; =mp,u, (3.8.4)

The input energy varies linearly with the displacement amplitude (Fig. 3.8.1). In contrast,
the dissipated energy varies quadratically with the displacement amplitude (Eq. 3.8.1). As
shown in Fig. 3.8.1, before steady state is reached, the input energy per cycle exceeds
the energy dissipated during the cycle by damping, leading to a larger amplitude of dis-
placement in the next cycle. With growing displacement amplitude, the dissipated energy
increases more rapidly than does the input energy. Eventually, the input and dissipated
energies will match at the steady-state displacement amplitude u,,, which will be bounded
no matter how small the damping. This energy balance provides an alternative means of

Ep E;

E=Ep

Energy

Uo
. | Figure 3.8.1 Input energy E; and energy
Amplitude dissipated Ep in viscous damping.
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finding u, due to harmonic force with w = w,; equating Egs. (3.8.1) and (3.8.4) gives

T Polly = ncwnu% (3.8.5)
Solving for u, leads to
R . (3.8.6)
cwy

This result agrees with Eq. (3.2.7), obtained by solving the equation of motion.

We will now present a graphical interpretation for the energy dissipated in viscous
damping. For this purpose we first derive an equation relating the damping force fp to the
displacement u:

fp = cu(t) = cou, cos(wt — @)

= ca)\/uf) — uZsin*(ot — ¢)

= canfuZ — [u()]?
2 2
(l) +< /o ) _1 (3.8.7)
U, cou,

which is the equation of the ellipse shown in Fig. 3.8.2a. Observe that the fp—u curve
is not a single-valued function but a loop known as a hysteresis loop. The area enclosed
by the ellipse is 7 (u,) (cwu,) = ncwu?}, which is the same as Eq. (3.8.1). Thus the area
within the hysteresis loop gives the dissipated energy.

This can be rewritten as

Jo+fs
i J/ Js=ku
kut,
/
/o /
/
cou, cou, P
Loading, 1 > 0 >/ /
/
u u

N~

<0 Unloading, 1i < 0

(a) (b)

Figure 3.8.2 Hysteresis loops for (a) viscous damper; (b) spring and viscous damper in parallel.



102 Response to Harmonic and Periodic Excitations Chap. 3

It is of interest to examine the total (elastic plus damping) resisting force because
this is the force that is measured in an experiment:

fs+ fpo =ku(t)+ cu(t)

= ku + coy/ul — u? (3.8.8)

A plot of fs 4+ fp against u is the ellipse of Fig. 3.8.2a rotated as shown in Fig. 3.8.2b
because of the ku term in Eq. (3.8.8). The energy dissipated by damping is still the area en-
closed by the ellipse because the area enclosed by the single-valued elastic force, fs = ku,
is zero.

The hysteresis loop associated with viscous damping is the result of dynamic hystere-
sis since it is related to the dynamic nature of the loading. The loop area is proportional
to excitation frequency; this implies that the force—deformation curve becomes a single-
valued curve (no hysteresis loop) if the cyclic load is applied slowly enough (v = 0). A
distinguishing characteristic of dynamic hysteresis is that the hysteresis loops tend to be
elliptical in shape rather than pointed, as in Fig. 1.3.1c, if they are associated with plastic
deformations. In the latter case, the hysteresis loops develop even under static cyclic loads;
this phenomenon is therefore known as static hysteresis because the force—deformation
curve is insensitive to deformation rate.

In passing, we mention two measures of damping: specific damping capacity and
the specific damping factor. The specific damping capacity, Ep/Es,, is that fractional part
of the strain energy, Es, = ku?/2, which is dissipated during each cycle of motion; both
Ep and Ejg, are shown in Fig. 3.8.3. The specific damping factor, also known as the loss
factor; is defined as

1 Ep

§=5- o (3.8.9)

If the energy could be removed at a uniform rate during a cycle of simple harmonic motion
(such a mechanism is not realistic), £ could be interpreted as the energy loss per radian

Resisting force

il
|

Deformation

Figure 3.8.3 Definition of energy loss
Ep in a cycle of harmonic vibration and
maximum strain energy Es,.
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divided by the strain energy, Es,. These two measures of damping are not often used in
structural vibration since they are most useful for very light damping (e.g., they are useful
in comparing the damping capacity of materials).

Derivation 3.6

Equation (3.8.2) gives the input energy per cycle where the phase angle, defined by Eq. (3.2.12),

can be expressed as
sing = (20 L )Ry = (202 ) Lo
Wp wn ) polk

Substituting this in Eq. (3.8.2) gives Eq. (3.8.3).

3.9 EQUIVALENT VISCOUS DAMPING

As introduced in Section 1.4, damping in actual structures is usually represented by equiv-
alent viscous damping. It is the simplest form of damping to use since the governing
differential equation of motion is linear and hence amenable to analytical solution, as seen
in earlier sections of this chapter and in Chapter 2. The advantage of using a linear equation
of motion usually outweighs whatever compromises are necessary in the viscous damping
approximation. In this section we determine the damping coefficient for viscous damping
so that it is equivalent in some sense to the combined effect of all damping mechanisms
present in the actual structure; these were mentioned in Section 1.4.

The simplest definition of equivalent viscous damping is based on the measured re-
sponse of a system to harmonic force at exciting frequency w equal to the natural frequency
w, of the system. The damping ratio .4 is calculated from Eq. (3.4.1) using measured val-
ues of u, and (uy),. This is the equivalent viscous damping since it accounts for all the
energy-dissipating mechanisms that existed in the experiments.

Another definition of equivalent viscous damping is that it is the amount of damping
that provides the same bandwidth in the frequency-response curve as obtained experimen-
tally for an actual system. The damping ratio ¢ is calculated from Eq. (3.2.24) using the
excitation frequencies f,, f, and f, (Fig. 3.4.1) obtained from an experimentally deter-
mined frequency-response curve.

The most common method for defining equivalent viscous damping is to equate the
energy dissipated in a vibration cycle of the actual structure and an equivalent viscous sys-
tem. For an actual structure the force-displacement relation is obtained from an experiment
under cyclic loading with displacement amplitude u,; such a relation of arbitrary shape is
shown schematically in Fig. 3.9.1. The energy dissipated in the actual structure is given
by the area Ep enclosed by the hysteresis loop. Equating this to the energy dissipated in
viscous damping given by Eq. (3.8.1) leads to

1 1 Ep
477 a)/wn ESU

M%f%:%(ﬂ%: (3.9.1)
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Figure 3.9.1 Energy dissipated Ep in a
cycle of harmonic vibration determined from
/ experiment.

where the strain energy, Es, = ku?2/2, is calculated from the stiffness k determined by
experimentation.

The experiment leading to the force—deformation curve of Fig. 3.9.1 and hence Ep
should be conducted at @ = w,, where the response of the system is most sensitive to
damping. Thus Eq. (3.9.1) specializes to

1 Ep
_47TESO

Ceq (3.9.2)

The damping ratio £.q determined from a test at @ = w, would not be correct at any other
exciting frequency, but it would be a satisfactory approximation (Section 3.10.2).

It is widely accepted that this procedure can be extended to model the damping in
systems with many degrees of freedom. An equivalent viscous damping ratio is assigned
to each natural vibration mode of the system (defined in Chapter 10) in such a way that the
energy dissipated in viscous damping matches the actual energy dissipated in the system
when the system vibrates in that mode at its natural frequency.

In this book the concept of equivalent viscous damping is restricted to systems vi-
brating at amplitudes within the linearly elastic limit of the overall structure. The energy
dissipated in inelastic deformations of the structure has also been modeled as equivalent
viscous damping in some research studies. This idealization is generally not satisfactory,
however, for the large inelastic deformations of structures expected during strong earth-
quakes. We shall account for these inelastic deformations and the associated energy dis-
sipation by nonlinear force—deformation relations, such as those shown in Fig. 1.3.4 (see
Chapters 5 and 7).

Example 3.6

A body moving through a fluid experiences a resisting force that is proportional to the square
of the speed, fp = +au?, where the positive sign applies to positive i and the negative sign
to negative u. Determine the equivalent viscous damping coefficient ceq for such forces acting
on an oscillatory system undergoing harmonic motion of amplitude «, and frequency w. Also
find its displacement amplitude at w = w;,.
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Solution If time is measured from the position of largest negative displacement, the har-
monic motion is

u(t) = —u, cos wt

The energy dissipated in one cycle of motion is

2 /w /w
ED=/fDdu=/ beldt=2/ fpu dt
0 0

/o T/w
= 2/ (ai*)i dt = 2aw’u} / sin® ot dt = $aw’ul
0 0

o
Equating this to the energy dissipated in viscous damping [Eq. (3.8.1)] gives
8 8
nceqa)ug = gawzuz Or  Ceq = Eaa)uo (a)

Substituting @ = w, in Eq. (a) and the ceq for ¢ in Eq. (3.2.15) gives

1/2
37 po

0= _— b

“=(%5) v

PART C: SYSTEMS WITH NONVISCOUS DAMPING

3.10 HARMONIC VIBRATION WITH RATE-INDEPENDENT DAMPING
3.10.1 Rate-Independent Damping

Experiments on structural metals indicate that the energy dissipated internally in cyclic
straining of the material is essentially independent of the cyclic frequency. Similarly,
forced vibration tests on structures indicate that the equivalent viscous damping ratio is
roughly the same for all natural modes and frequencies. Thus we refer to this type of
damping as rate-independent linear damping. Other terms used for this mechanism of in-
ternal damping are structural damping, solid damping, and hysteretic damping. We prefer
not to use these terms because the first two are not especially meaningful, and the third is
ambiguous because hysteresis is a characteristic of all materials or structural systems that
dissipate energy.

Rate-independent damping is associated with static hysteresis due to plastic strain,
localized plastic deformation, crystal plasticity, and plastic flow in a range of stresses
within the apparent elastic limit. On the microscopic scale the inhomogeneity of stress dis-
tribution within crystals and stress concentration at crystal boundary intersections
produce local stress high enough to cause local plastic strain even though the average
(macroscopic) stress may be well below the elastic limit. This damping mechanism does
not include the energy dissipation in macroscopic plastic deformations, which as men-
tioned earlier, is handled by a nonlinear relationship between force fy and deformation u.
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The simplest device that can be used to represent rate-independent linear damping
during harmonic motion at frequency w is to assume that the damping force is proportional
to velocity and inversely proportional to frequency:

nk .

fo =i (3.10.1)

where k is the stiffness of the structure and 7 is a damping coefficient. The energy dissi-
pated by this type of damping in a cycle of vibration at frequency w is independent of w
(Fig. 3.10.1). It is given by Eq. (3.8.1) with ¢ replaced by nk/w:

Ep = mku? = 2mmnEs, (3.10.2)

In contrast, the energy dissipated in viscous damping [Eq. (3.8.1)] increases linearly with
the forcing frequency as shown in Fig. 3.10.1.

Viscous damping

Rate-independent damping

o,
|
Forcing frequency ®

Figure 3.10.1 Energy dissipated in viscous
damping and rate-independent damping.

Rate-independent damping is easily described if the excitation is harmonic and we
are interested only in the steady-state response of this system. Difficulties arise in trans-
lating this damping mechanism back to the time domain. Thus it is most useful in the
frequency-domain method of analysis (Appendix A).

3.10.2 Steady-State Response to Harmonic Force
The equation governing harmonic motion of an SDF system with rate-independent linear
damping, denoted by a crossed box in Fig. 3.10.2, is Eq. (3.2.1) with the damping term
replaced by Eq. (3.10.1):
L
mii + —u + ku = p(t) (3.10.3)
1)

The mathematical solution of this equation is quite complex for arbitrary p(t).
Here we consider only the steady-state motion due to a sinusoidal forcing function,
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v |—(> u
n
X
m —» p(t)
% ) () o Friction-free surface Figure 3.10.2 SDF system with
7 rate-independent linear damping.

p(t) = p, sinwt, which is described by

u(t) = u, sin(wt — @) (3.10.4)
The amplitude u, and phase angle ¢ are
1
Uo = (Mst)n 3 (3105)
JI = @/o)?] + 2
- U
=tan! ————— 3.10.6
= e (100

These results are obtained by modifying the viscous damping ratio in Eqgs. (3.2.11) and
(3.2.12) to reflect the damping force associated with rate-independent damping, Eq. (3.10.1).
In particular, ¢ was replaced by

¢ _ nkjo n

$ = e T 2man - 2wfan) (G107

Shown in Fig. 3.10.3 by solid lines are plots of u,/(uy), and ¢ as a function of the
frequency ratio w/w, for damping coefficient n = 0, 0.2, and 0.4; the dashed lines are
described in the next section. Comparing these results with those in Fig. 3.2.6 for viscous
damping, two differences are apparent: First, resonance (maximum amplitude) occurs at
® = w,, not at ® < w,. Second, the phase angle for v = 0is ¢ = tan™! n instead of zero
for viscous damping; this implies that motion with rate-independent damping can never be
in phase with the forcing function.

These differences between forced vibration with rate-independent damping and forced
vibration with viscous damping are not significant, but they are the source of some diffi-
culty in reconciling physical data. In most damped vibration, damping is not viscous, and
to assume that it is without knowing its real physical characteristics is an assumption of
some error. In the next section this error is shown to be small when the real damping is
rate independent.

3.10.3 Solution Using Equivalent Viscous Damping

In this section an approximate solution for the steady-state harmonic response of a system
with rate-independent damping is obtained by modeling this damping mechanism as equiv-
alent viscous damping.

Matching dissipated energies at @ = w, led to Eq. (3.9.2), where Ej is given by
Eq. (3.10.2), leading to the equivalent viscous damping ratio:

feq = g (3.10.8)
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Figure 3.10.3 Response of system with rate-independent damping: exact solution and
approximate solution using equivalent viscous damping.

Substituting this eq for ¢ in Egs. (3.2.10) to (3.2.12) gives the system response. The
resulting amplitude u, and phase angle ¢ are shown by the dashed lines in Fig. 3.10.3.
This approximate solution matches the exact result at w = w, because that was the cri-
terion used in selecting &q (Fig. 3.10.1). Over a wide range of excitation frequencies the
approximate solution is seen to be accurate enough for many engineering applications.
Thus Eq. (3.10.3)—which is difficult to solve for arbitrary force p(¢) that contains many
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harmonic components of different frequencies w—can be replaced by the simpler Eq. (3.2.1)
for a system with equivalent viscous damping defined by Eq. (3.10.8). This is the basic ad-
vantage of equivalent viscous damping.

3.11 HARMONIC VIBRATION WITH COULOMB FRICTION
3.11.1 Equation of Motion

Shown in Fig. 3.11.1 is a mass—spring system with Coulomb friction force F = uN that
opposes sliding of the mass. As defined in Section 2.4, the coefficients of static and kinetic
friction are assumed to be equal to , and N is the normal force across the sliding surfaces.
The equation of motion is obtained by including the exciting force in Egs. (2.4.1) and
(2.4.2) governing the free vibration of the system:

mii +ku £ F = p(t) (3.11.1)

The sign of the friction force changes with the direction of motion; the positive sign applies
if the motion is from left to right (z > 0) and the negative sign is for motion from right
to left (u < 0). Each of the two differential equations is linear, but the overall problem is
nonlinear because the governing equation changes every half-cycle of motion. Therefore,
exact analytical solutions would not be possible except in special cases.

m s p(1)

Friction force + F  Figure 3.11.1  SDF system with Coulomb
friction.

3.11.2 Steady-State Response to Harmonic Force

An exact analytical solution for the steady-state response of the system of Fig. 3.11.1
subjected to harmonic force was developed by J. P. Den Hartog in 1933. The analysis
is not included here, but his results are shown by solid lines in Fig. 3.11.2; the dashed lines
are described in the next section. The displacement amplitude u,, normalized relative to
(us)o = po/k, and the phase angle ¢ are plotted as a function of the frequency ratio w/w,
for three values of F'/p,. If there is no friction, F' = 0 and u,/(us), = (Ryq);=0, the same
as in Eq. (3.1.11) for an undamped system. The friction force reduces the displacement
amplitude u,, with the reduction depending on the frequency ratio w/w,.
At w = w, the amplitude of motion is not limited by Coulomb friction if
F b

— <= 3.11.2
Do ! ( )
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Coulomb friction

Equivalent viscous damping

Deformation response factor Ry = u, / (us),

O'O 1 1 1 1 1 1
180°
0.5
= B . ppp——— Q ______
(9} I
%‘) o \ 07/3-
o 90
R 08 7
£ = / 0.7
L 0 5/—"7 F/pv o
O° ! ! L 1 1 1
0.0 0.5 1.0 1.5 2.0

Frequency ratio ® / m,

Figure 3.11.2 Deformation response factor and phase angle of a system with Coulomb
friction excited by harmonic force. Exact solution from J. P. Den Hartog; approximate
solution is based on equivalent viscous damping.

which is surprising since F' = (1 /4)p, represents a large friction force, but can be ex-
plained by comparing the energy E dissipated in friction against the input energy E;.
The energy dissipated by Coulomb friction in one cycle of vibration with displacement
amplitude u, is the area of the hysteresis loop enclosed by the friction force—displacement
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diagram (Fig. 3.11.3):

Ep = 4Fu, (3.11.3)

Friction
force
3
F
—rs T Displacement

—F
Figure 3.11.3 Hysteresis loop for
Coulomb friction.

Observe that the dissipated energy in a vibration cycle is proportional to the ampli-
tude of the cycle. The energy E; input by the harmonic force applied at v = w, is also
proportional to the displacement amplitude. If Eq. (3.11.2) is satisfied, it can be shown that

EF<E]

that is, the energy dissipated in friction per cycle is less than the input energy (Fig. 3.11.4).
Therefore, the displacement amplitude would increase cycle after cycle and grow with-
out bound. This behavior is quite different from that of systems with viscous damping or
rate-independent damping. For these forms of damping, as shown in Section 3.8, the dis-
sipated energy increases quadratically with displacement amplitude, and the displacement
amplitude is bounded no matter how small the damping. In connection with the fact that
infinite amplitudes occur at @ = w, if Eq. (3.11.2) is satisfied, the phase angle shows a
discontinuous jump at v = w, (Fig. 3.11.2).

E;

Ep

Energy

- Figure 3.11.4 Input energy E; and energy
Amplitude dissipated Er by Coulomb friction.
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3.11.3 Solution Using Equivalent Viscous Damping

In this section an approximate solution for the steady-state harmonic response of a system
with Coulomb friction is obtained by modeling this damping mechanism by equivalent
viscous damping. Substituting Ef, the energy dissipated by Coulomb friction given by
Eq. (3.11.3), for Ep in Eq. (3.9.1) provides the equivalent viscous damping ratio:

2 1 ur

g = — — 3.11.4
feq T w/w, U, ( )

where up = F /k. The approximate solution for the displacement amplitude u, is obtained
by substituting ¢eq for ¢ in Eq. (3.2.11):

Uo 1
(ust)o {[1 _ (w/wn)z]z + [(4/7‘[)(MF/M0)]2}

This contains u,, on the right side also. Squaring and solving algebraically, the normalized
displacement amplitude is

172

1/2

u, {1 =1&/m)(F/p)I}
(usl)u 1— (0)/0),1)2
This approximate result is valid provided that F/p, < m/4. The approximate solution
cannot be used if F'/p, > m /4 because then the quantity under the radical is negative and
the numerator is imaginary.

These approximate and exact solutions are compared in Fig. 3.11.2. If the friction
force is small enough to permit continuous motion, this motion is practically sinusoidal
and the approximate solution is close to the exact solution. If the friction force is large,
discontinuous motion with stops and starts results, which is much distorted relative to a
sinusoid, and the approximate solution is poor.

The approximate solution for the phase angle is obtained by substituting eq for ¢ in
Eq. (3.2.12):

(3.11.5)

tan ¢ _ (4/77)("{F/u0)
= (0/w,)?
Substituting for u, from Eq. (3.11.5) gives
tan ¢ = + @/m)(F/po) - (3.11.6)
{1=1@/m)(F/po)P}

For a given value of F/p,, the tan ¢ is constant but with a positive value if w/w, < 1 and
a negative value if /w, > 1. This is shown in Fig. 3.11.2, where it is seen that the phase
angle is discontinuous at v = w, for Coulomb friction.

Example 3.7

The structure of Example 2.7 with friction devices deflects 2 in. under a lateral force of
p = 500 kips. What would be the approximate amplitude of motion if the lateral force is
replaced by the harmonic force p(t) = 500 sin wt, where the forcing period 7" = 1 sec?
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Solution The data (given and from Example 2.7) are

(ts)o = % —2in.  up =0.15in.

0.5

o T, 05
w, T 1
Calculate u,, from Eq. (3.11.5).

F _F/k _ up 0.5

— = = = —=0.075
Po Po/k (ust)o 2
Substituting for '/ p, in Eq. (3.11.5) gives
1/2
1 — [(4/7)0.0751?
w,__ f1-l@/moorspy

(U)o 1 —(0.5)2
u, = 1.327(2) = 2.654 in.

PART D: RESPONSE TO PERIODIC EXCITATION

A periodic function is one in which the portion defined over Ty repeats itself indefinitely
(Fig. 3.12.1). Many forces are periodic or nearly periodic. Under certain conditions,
propeller forces on a ship, wave loading on an offshore platform, and wind forces induced
by vortex shedding on tall, slender structures are nearly periodic. Earthquake ground mo-
tion usually has no resemblance to a periodic function. However, the base excitation arising
from an automobile traveling on an elevated freeway that has settled because of long-term
creep may be nearly periodic.

LT | m

Figure 3.12.1 Periodic excitation.

We are interested in analyzing the response to periodic excitation for yet another
reason. The analysis can be extended to arbitrary excitations utilizing discrete Fourier
transform techniques. These are introduced in Appendix A.
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3.12 FOURIER SERIES REPRESENTATION

A function p(¢) is said to be periodic with period 7y if it satisfies the following relation-

ship:
pt+jTo) =pt)  j=-00,...,-3,-2,-1,0,1,2,3,...,00
A periodic function can be separated into its harmonic components using the Fourier
series:
oo [o.¢]
p(t) =a0+zaj cos jwot +ij sin jwot (3.12.1)
j=1 j=1

where the fundamental harmonic in the excitation has the frequency
2

Ty

The coefficients in the Fourier series can be expressed in terms of p(f) because the sine
and cosine functions are orthogonal:

(3.12.2)

wo) =

I
aw=— | p@ dr (3.12.3)
To Jo
To
aj=— | p@ycosjoordr  j=1,2.3,... (3.12.4)
Ty Jo
2 To
bj=— | p@)sinjotd  j=12.3.... (3.12.5)
To Jo

The coefficient ay is the average value of p(t); coefficients a; and b; are the amplitudes of
the jth harmonics of frequency jwy.

Theoretically, an infinite number of terms are required for the Fourier series to con-
verge to p(¢). In practice, however, a few terms are sufficient for good convergence. At
a discontinuity, the Fourier series converges to a value that is the average of the values
immediately to the left and to the right of the discontinuity.

3.13 RESPONSE TO PERIODIC FORCE

A periodic excitation implies that the excitation has been in existence for a long time,
by which time the transient response associated with the initial displacement and velocity
has decayed. Thus, we are interested in finding the steady-state response. Just as for
harmonic excitation, the response of a linear system to a periodic force can be determined
by combining the responses to individual excitation terms in the Fourier series.

The response of an undamped system to constant force p(t) = ay is given by Eq. (f)
of Example 1.8, in which the cos wt term will decay because of damping (see Section 4.3),
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leaving the steady-state solution.

agp

uog(t) = * (3.13.1)

The steady-state response of a viscously damped SDF system to harmonic

cosine force p(t) = ajcos(jwyt) is given by Egs. (3.2.3) and (3.2.26) with w replaced
by jwo:

a; 2¢B; sin jwot + (1 — ,BJ.Z) cos jwot

C(t) = 3.13.2
Mj([) k (1 _ IBJZ)z + (24‘/3_1‘)2 ( )

where
B = ]:)DO (3.13.3)

Similarly, the steady-state response of the system to sinusoidal force p(f) =
bj sin jaot is given by Eqgs. (3.2.3) and (3.2.4) with o replaced by jwo:

lj (11— ,sz) sin jwgt — 2B} cos jawot
k (1— B + (2082

If ¢ = 0 and one of B; = 1, the steady-state response is unbounded and not meaningful
because the transient response never decays (see Section 3.1); in the following it is assumed

that ¢ # O and B; # 1.
The steady-state response of a system with damping to periodic excitation p(¢) is the

combination of responses to individual terms in the Fourier series:

HOE (3.13.4)

o0 o0
w(t) = uo(t) + Y u§(6) + Y us(t) (3.13.5)
j=1 j=1
Substituting Eqgs. (3.13.1), (3.13.2), and (3.13.4) into (3.13.5) gives
ap 1

21
= L T g ey

{[a;2¢B)) + b; (1 — B2)] sin jwor

+ [a;(1 = B?) — b;(2¢B))] cos jwot } (3.13.6)

The response u(t) is a periodic function with period Tj.

The relative contributions of the various harmonic terms in Eq. (3.13.6) depend on
two factors: (1) the amplitudes a; and b; of the harmonic components of the forcing func-
tion p(t), and (2) the frequency ratio B;. The response will be dominated by those har-
monic components for which g; is close to unity [i.e., the forcing frequency jwy is close
to the natural frequency (see Fig. 3.2.6)].

TThe notation uo used here includes the subscript zero consistent with ag; this should not be confused with
u, with the subscript “oh” used earlier to denote the maximum value of u(z).
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Example 3.8
The periodic force shown in Fig. E3.8a is defined by

p(t):{po 0<1<Tp/2

—po To/2=t=Ty @

(@)

)/ (),

-1.5- (b)
Three terms
1.5 Three terms Four terms 21 Four terms
NT = \71( .
4 - — PES
S /4 \ =
< z
= 0 E 0 vy
QU = \
\
-1.5- 2
0 0.25 0.5 0 0.25 0.5
t!Ty 1T,
(©) (e)

Figure E3.8
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Substituting this in Egs. (3.12.3) to (3.12.5) gives the Fourier series coefficients:

1 [T

a0 = _/ Pt di =0 (b)
To Jo
2 (T

aj = —/ p(t) cos jwot dt
1o Jy
2 To/2 Ty

= — |:p0/ cos jwot dt + (—po) cos jwot dt:| =0 (©)

To 0 To/2

2 (D
bj = — p(t)sin jwot dt
To Jo

2 To/2 To
— |:p0/ sin jwot dt + (—po) sin jwot dt]
To 0 Tp/2

0 J even
=1 4p,/jmr jodd (d)
Thus the Fourier series representation of p(#) is

4po o~ 1.
P(t):ij(z): p Z ~ sin oot (e)

T
j=1,3,5
The first four terms of this series are shown in Fig. E3.8b, where the frequencies and
. . 11 1 . .

relative amplitudes—I1, 3, 5, and 5—of the four harmonics are apparent. The cumulative sum
of the Fourier terms is shown in Fig. E3.8c, where four terms provide a reasonable represen-
tation of the forcing function. At ¢ = Tp/2, where p(¢) is discontinuous, the Fourier series
converges to zero, the average value of p(7p/2).

The response of an SDF system to the forcing function of Eq. (e) is obtained by substi-
tuting Egs. (b), (¢), and (d) in Eq. (3.13.6) to obtain

o0

4 1= ,312) sin jwot — 2¢B; cos jwot
u(t) = (Mst)on Z j (1-— ﬁJZ)Z 4 (2;[3})2

()

=135

Shown in Fig. E3.8d are the responses of an SDF system with natural period 7,, = Tp/4 and
damping ratio { = 5% to the first four loading terms in the Fourier series of Eq. (e). These
are plots of individual terms in Eq. (f) with 8; = jwo/w, = jT,/To = j/4. The relative
amplitudes of these terms are apparent. None of them is especially large because none of the
Bj values is especially close to unity; note that g; = %, %, f—w %, and so on. The cumulative
sum of the individual response terms of Eq. (f) is shown in Fig. E3.8e, where the contribution
of the fourth term is seen to be small. The higher terms would be even smaller because the
amplitudes of the harmonic components of p () decrease with j and B; would be even farther
from unity.
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APPENDIX 3: FOUR-WAY LOGARITHMIC GRAPH PAPER

R, is plotted as a function of w/w, on log-log graph paper [i.c., log R, is the ordinate and
log(w/w,) the abscissa]. Equation (3.2.21) gives

log R, = log 2 + log Ry (A3.1)
wy,
If R; is a constant, Eq. (A3.1) represents a straight line with slope of +1. Grid lines
showing constant R; would therefore be straight lines of slope +1, and the R;-axis would
be perpendicular to them (Fig. A3.1). Equation (3.2.21) also gives

log R, = — log = + log R, (A3.2)
wy,
If R, is a constant, Eq. (A3.2) represents a straight line with slope of —1. Grid lines
showing constant R, would be straight lines of slope —1, and the R,-axis would be per-
pendicular to them (Fig. A3.1).

With reference to Fig. A3.1, the scales are established as follows:

1. With the point (R, = 1, w/w, = 1) as the origin, draw a vertical R,-axis and a
horizontal w/w,-axis with equal logarithmic scales.

2. The mark A on the R,-axis would be located at the point (R, = A%, w/w, = A'/?)
in order to satisfy

R, = 2R, (A3.3)
wy
R, and w/w, are taken to be equal because the R,-axis has a slope of +1. This
procedure is shown for A = 9, leading to the scale marks 3 on the R, and w/w,
axes.
3. The mark D on the Ry-axis would be located at the point (R, = D2 w/w, =
D~'/2) in order to satisfy

w
Ry=R,+— (A3.4)
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Figure A3.1 Construction of four-way logarithmic graph paper.

and the condition that the R;-axis has a slope of —1. This procedure is shown for
D = 4, leading to the scale mark 2 on the R,-axis and to the scale mark % on the

W/ wy,-axis.

The logarithmic scales along the R; and R, axes are equal but not the same as the
R, and w/w, scales.

Part A

3.1

PROBLEMS

The mass m, stiffness &, and natural frequency w, of an undamped SDF system are unknown.
These properties are to be determined by harmonic excitation tests. At an excitation frequency
of 4 Hz, the response tends to increase without bound (i.e., a resonant condition). Next, a
weight Aw = 5 Ib is attached to the mass m and the resonance test is repeated. This time
resonance occurs at f = 3 Hz. Determine the mass and the stiffness of the system.
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3.2

3.3
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3.5

2

3.6

3.7

3.8

Response to Harmonic and Periodic Excitations Chap. 3

An SDF system is excited by a sinusoidal force. At resonance the amplitude of displacement
was measured to be 2 in. At an exciting frequency of one-tenth the natural frequency of the
system, the displacement amplitude was measured to be 0.2 in. Estimate the damping ratio of
the system.

In a forced vibration test under harmonic excitation it was noted that the amplitude of motion
at resonance was exactly four times the amplitude at an excitation frequency 20% higher than
the resonant frequency. Determine the damping ratio of the system.

A machine is supported on four steel springs for which damping can be neglected. The natural
frequency of vertical vibration of the machine—spring system is 200 cycles per minute. The
machine generates a vertical force p(#) = posinwt. The amplitude of the resulting steady-
state vertical displacement of the machine is #, = 0.2 in. when the machine is running at 20
revolutions per minute (rpm), 1.042 in. at 180 rpm, and 0.0248 in. at 600 rpm. Calculate the
amplitude of vertical motion of the machine if the steel springs are replaced by four rubber
isolators that provide the same stiffness but introduce damping equivalent to { = 25% for the
system. Comment on the effectiveness of the isolators at various machine speeds.

An air-conditioning unit weighing 1200 1b is bolted at the middle of two parallel simply
supported steel beams (Fig. P3.5). The clear span of the beams is 8 ft. The second mo-
ment of cross-sectional area of each beam is 10 in*. The motor in the unit runs at 300 rpm
and produces an unbalanced vertical force of 60 1b at this speed. Neglect the weight of the
beams and assume 1% viscous damping in the system; for steel £ = 30,000 ksi. Determine
the amplitudes of steady-state deflection and steady-state acceleration (in g’s) of the beams at
their midpoints which result from the unbalanced force.

Air-conditioning unit
Steel beams

/

R

y § ,

I
*

S

* Figure P3.5

(a) Show that the steady-state response of an SDF system to a cosine force, p(t) = p, cos wt,
is given by

po [1 = (@/wn)*] cos ot + [2¢ (w/wy)] sin ot
ko 1= @/on?] + 2t @/on)]?

(b) Show that the maximum deformation due to cosine force is the same as that due to sinu-
soidal force.

u(t) =

(a) Show that w, = w, (1 — 2;2)1/ 2 is the resonant frequency for displacement amplitude of
an SDF system.

(b) Determine the displacement amplitude at resonance.

(a) Show that w, = w, (1 — 2¢2)~1/2 is the resonant frequency for acceleration amplitude of
an SDF system.

(b) Determine the acceleration amplitude at resonance.



Chap. 3 Problems 121

3.9 (a) Show that @, = w, is the resonant frequency for velocity amplitude of an SDF system.
(b) Determine the velocity amplitude at resonance.
Part B

3.10 A one-story reinforced concrete building has a roof mass of 500 kips/g, and its natural fre-

3.11

3.12

3.13

3.14

3.15

quency is 4 Hz. This building is excited by a vibration generator with two weights, each 50 1b,
rotating about a vertical axis at an eccentricity of 12 in. When the vibration generator runs
at the natural frequency of the building, the amplitude of roof acceleration is measured to be
0.02g. Determine the damping of the structure.

The steady-state acceleration amplitude of a structure caused by an eccentric-mass vibration
generator was measured for several excitation frequencies. These data are as follows:

Frequency (Hz)  Acceleration (10_3 g) Frequency (Hz)  Acceleration (10_3 g)
1.337 0.68 1.500 7.10
1.378 0.90 1.513 5.40
1.400 1.15 1.520 4.70
1.417 1.50 1.530 3.80
1.438 2.20 1.540 3.40
1.453 3.05 1.550 3.10
1.462 4.00 1.567 2.60
1.477 7.00 1.605 1.95
1.487 8.60 1.628 1.70
1.493 8.15 1.658 1.50
1.497 7.60

Determine the natural frequency and damping ratio of the structure.

Consider an industrial machine of mass m supported on spring-type isolators of total stiffness
k. The machine operates at a frequency of f hertz with a force unbalance p,.

(a) Determine an expression giving the fraction of force transmitted to the foundation as a
function of the forcing frequency f and the static deflection §s; = mg/k. Consider only the
steady-state response.

(b) Determine the static deflection §g; for the force transmitted to be 10% of p, if f = 20 Hz.
For the automobile in Example 3.4, determine the amplitude of the force developed in the
spring of the suspension system when the automobile is traveling at 40 mph.

Determine the speed of the automobile in Example 3.4 that would produce a resonant condi-
tion for the spring force in the suspension system.

A vibration isolation block is to be installed in a laboratory so that the vibration from adjacent

factory operations will not disturb certain experiments (Fig. P3.15). If the isolation block
weighs 2000 Ib and the surrounding floor and foundation vibrate at 1500 cycles per minute,
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3.16

317

3.18

3.19

3.20

3.21

3.22
3.23

3.24
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determine the stiffness of the isolation system such that the motion of the isolation block is
limited to 10% of the floor vibration; neglect damping.

Isolation block

# Figure P3.15

An SDF system is subjected to support displacement ug(f) = ug, sinwt. Show that the
amplitude u! of the total displacement of the mass is given by Eq. (3.6.5).

The natural frequency of an accelerometer is 50 Hz, and its damping ratio is 70%. Com-
pute the recorded acceleration as a function of time if the input acceleration is iig(t) =
0.1g sin2xft for f = 10, 20, and 40 Hz. A comparison of the input and recorded
accelerations was presented in Fig. 3.7.3. The accelerometer is calibrated to read the input
acceleration correctly at very low values of the excitation frequency. What would be the error
in the measured amplitude at each of the given excitation frequencies?

An accelerometer has the natural frequency f,, = 25 Hz and damping ratio { = 60%. Write an
equation for the response u(¢) of the instrument as a function of time if the input acceleration
is lig(t) = iig,sin2m ft. Sketch the ratio a),zlu(, /ligo as a function of f/ f,. The accelerom-
eter is calibrated to read the input acceleration correctly at very low values of the excitation
frequency. Determine the range of frequencies for which the acceleration amplitude can be
measured with an accuracy of +1%. Identify this frequency range on the above-mentioned
plot.

The natural frequency of an accelerometer is f,, = 50 Hz, and its damping ratio is ¢ = 70%.
Solve Problem 3.18 for this accelerometer.

If a displacement-measuring instrument is used to determine amplitudes of vibration at fre-
quencies very much higher than its own natural frequency, what would be the optimum instru-
ment damping for maximum accuracy?

A displacement meter has a natural frequency f, = 0.5 Hz and a damping ratio ¢ = 0.6.
Determine the range of frequencies for which the displacement amplitude can be measured
with an accuracy of +1%.

Repeat Problem 3.21 for { = 0.7.

Show that the energy dissipated per cycle for viscous damping can be expressed by

n_p(% 28 (w/wp)
k1 = (@/on?] + 12¢ (@/on)T?

Ep =

Show that for viscous damping the loss factor & is independent of the amplitude and propor-
tional to the frequency.
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Part C

3.25 The properties of the SDF system of Fig. P2.20 are as follows: w = 500 kips, F = 50 kips,
and 7;, = 0.25 sec. Determine an approximate value for the displacement amplitude due to
harmonic force with amplitude 100 kips and period 0.30 sec.

Part D

3.26 An SDF system with natural period 7,, and damping ratio ¢ is subjected to the periodic force
shown in Fig. P3.26 with an amplitude p, and period 7.
(a) Expand the forcing function in its Fourier series.
(b) Determine the steady-state response of an undamped system. For what values of Ty is the
solution indeterminate?
(¢) For Ty /T,, = 2, determine and plot the response to individual terms in the Fourier series.
How many terms are necessary to obtain reasonable convergence of the series solution?

Po

T T T
-1, -T2 0 T,2 T, 2T, Figure P3.26






el ] O

Response to Arbitrary, Step, and
Pulse Excitations

PREVIEW

In many practical situations the dynamic excitation is neither harmonic nor periodic. Thus
we are interested in studying the dynamic response of SDF systems to excitations varying
arbitrarily with time. A general result for linear systems, Duhamel’s integral, is derived
in Part A of this chapter. This result is used in Part B to study the response of systems
to step force, linearly increasing force, and step force with finite rise time. These results
demonstrate how the dynamic response of the system is affected by the rise time.

An important class of excitations that consist of essentially a single pulse is consid-
ered in Part C. The time variation of the response to three different force pulses is studied,
and the concept of shock spectrum is introduced to present graphically the maximum re-
sponse as a function of #; /T, the ratio of pulse duration to the natural vibration period. Itis
then demonstrated that the response to short pulses is essentially independent of the pulse
shape and that the response can be determined using only the pulse area. Most of the anal-
yses and results presented are for systems without damping because the effect of damping
on the response to a single pulse excitation is usually not important; this is demonstrated
toward the end of the chapter.

PART A: RESPONSE TO ARBITRARILY TIME-VARYING
FORCES

A general procedure is developed to analyze the response of an SDF system subjected to
force p(t) varying arbitrarily with time. This result will enable analytical evaluation of
response to forces described by simple functions of time.

125
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We seek the solution of the differential equation of motion
mii + cu + ku = p(t)
subject to the initial conditions
u(0) =20 u(0) =0

In developing the general solution, p(¢) is interpreted as a sequence of impulses of in-
finitesimal duration, and the response of the system to p(¢) is the sum of the responses to
individual impulses. These individual responses can conveniently be written in terms of
the response of the system to a unit impulse.

4.1 RESPONSE TO UNIT IMPULSE

A very large force that acts for a very short time but with a time integral that is finite is
called an impulsive force. Shown in Fig. 4.1.1 is the force p(t) = 1/¢, with time duration
& starting at the time instant # = 7. As & approaches zero the force becomes infinite;
however, the magnitude of the impulse, defined by the time integral of p(¢), remains equal
to unity. Such a force in the limiting case ¢ — 0 is called the unit impulse. The Dirac
delta function 5(t — t) mathematically defines a unit impulse centered at t = 7.

According to Newton’s second law of motion, if a force p acts on a body of mass m,
the rate of change of momentum of the body is equal to the applied force, that is,

d
Z(mit) =p “4.1.1)
p
(a) 1/e
> !
T
e
h(t-7) N
Undamped system
1 1/ /Damped system
(b) T v \ / > 1

Figure 4.1.1 (a) Unit impulse; (b) response to unit impulse.
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For constant mass, this equation becomes
p = mii 4.1.2)

Integrating both sides with respect to ¢ gives
15)
/ pdt =m(uy —uy) =mAu (4.1.3)
1

The integral on the left side of this equation is the magnitude of the impulse. The product
of mass and velocity is the momentum. Thus Eq. (4.1.3) states that the magnitude of the
impulse is equal to the change in momentum.

This result is also applicable to an SDF mass—spring—damper system if the spring or
damper has no effect. Such is the case because the impulsive force acts for an infinitesi-
mally short duration. Thus a unit impulse at # = 7 imparts to the mass, m, the velocity
[from Eq. (4.1.3)]

() = % 4.1.4)

but the displacement is zero prior to and up to the impulse:
u(t)y =0 (4.1.5)

A unit impulse causes free vibration of the SDF system due to the initial velocity and
displacement given by Eqgs. (4.1.4) and (4.1.5). Substituting these in Eq. (2.2.4) gives the
response of viscously damped systems:

e 5D sin[wp (r — 1)] 1>t (4.1.6)

1
h(t — 1) =u(t) = p

This unit impulse-response function, denoted by h(t — 7), is shown in Fig. 4.1.1b, together
with the special case of ¢ = 0.

If the excitation is a unit impulse ground motion, based on Eq. (1.7.6), peg(t) =
—mé(t — 1), then Eq. (4.1.4) becomes u(7) = —1 and Eq. (4.1.6) changes to

1
h(t — 1) = —w—De—f‘“’x(’—” sin[wp(f — 7)] r>1 4.1.7)

4.2 RESPONSE TO ARBITRARY FORCE

A force p(t) varying arbitrarily with time can be represented as a sequence of infinites-
imally short impulses (Fig. 4.2.1). The response of a linear dynamic system to one of
these impulses, the one at time 7 of magnitude p(t)drt, is this magnitude times the unit
impulse-response function:

du(t) = [p()dtlh(t — 1) t>71 42.1)
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> T
G A
T
du ) Response to impulse 1
>
du ) Response to impulse 2
> !
du N Response to impulse at T
>
T
u ) Total response :
w/\ -

Figure 4.2.1 Schematic explanation of convolution integral.

The response of the system at time ¢ is the sum of the responses to all impulses up to that
time (Fig. 4.2.1). Thus

u(t):/ p(OA(t — 1) dT (4.2.2)
0
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This is known as the convolution integral, a general result that applies to any linear dynamic
system.

Specializing Eq. (4.2.2) for the SDF system by substituting Eq. (4.1.7) for the unit
impulse response function gives Duhamel’s integral:

1 t
u(t) = — / p(0)e " Dsinlwp(t — 1)] dt (4.2.3)
mwp Jo
For an undamped system this result simplifies to
1
u(t) = / p(t)sinfw,(t — 7)]dt 4.2.4)
mawy Jo

Implicit in this result are “at rest” initial conditions, #(0) = 0 and ©(0) = 0. If the initial
displacement and velocity are u(0) and #(0), the resulting free vibration response given by
Egs. (2.2.4) and (2.1.3) should be added to Eqgs. (4.2.3) and (4.2.4), respectively. Recall
that we had used Eq. (4.2.4) in Section 1.10.2, where four methods for solving the equation
of motion were introduced.

Duhamel’s integral provides a general result for evaluating the response of a linear
SDF system to arbitrary force. This result is restricted to linear systems because it is
based on the principle of superposition. Thus it does not apply to structures deforming
beyond their linearly elastic limit. If p(r) is a simple function, closed-form evaluation
of the integral is possible and Duhamel’s integral is an alternative to the classical method
for solving differential equations (Section 1.10.1). If p(7) is a complicated function that
is described numerically, evaluation of the integral requires numerical methods. These
will not be presented in this book, however, because they are not particularly efficient.
More effective methods for numerical solution of the equation of motion are presented in
Chapter 5.

PART B: RESPONSE TO STEP AND RAMP FORCES

4.3 STEP FORCE

A step force jumps suddenly from zero to p, and stays constant at that value (Fig. 4.3.1b).
It is desired to determine the response of an undamped SDF system (Fig. 4.3.1a) starting
at rest to the step force:

p{) = po (4.3.1)

The equation of motion has been solved (Section 1.10.2) using Duhamel’s integral to obtain

2t
u(t) = (ug), (1 — coswyt) = (ug), (1 — cos T ) 4.3.2)

n

where (ug), = po/k, the static deformation due to force p,,.
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€=0
) 2- A {=0.05
<~ - N\ (=02
u A % RN -~
2 1 V- /7 N
i Po E 14 - ~ = -
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\ /
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t/T,
(b) (©)

Figure 4.3.1 (a) SDF system; (b) step force; (c) dynamic response.

The normalized deformation or displacement, u(¢)/(us),, is plotted against normal-
ized time, 1 /T, in Fig. 4.3.1c. Itis seen that the system oscillates at its natural period about
a new equilibrium position, which is displaced through (uy), from the original equilib-
rium position of # = 0. The maximum displacement can be determined by differentiating
Eq. (4.3.2) and setting u(¢) to zero, which gives w, sinw,t = 0. The values ¢, of ¢ that
satisfy this condition are

onty = jT OF 1y = %Tn 4.3.3)
where j is an odd integer; even integers correspond to minimum values of u(¢). The
maximum value u, of u(¢) is given by Eq. (4.3.2) evaluated at t = 1,; these maxima are all
the same:

U, = 2(ug), 4.3.4)

Thus a suddenly applied force produces twice the deformation it would have caused as a
slowly applied force.

The response of a system with damping can be determined by substituting Eq. (4.3.1)
in Eq. (4.2.3) and evaluating Duhamel’s integral to obtain

u(t) = (uso [1 —efont (cos wpt + \/% sin th>] (4.3.5)

For analysis of damped systems the classical method (Section 1.10.1) may be easier,
however, than evaluating Duhamel’s integral. The differential equation to be solved is

mii + cu + ku = p, (4.3.6)

Its complementary solution is given by Eq. (f) of Derivation 2.2, the particular solution is
up = po/k, and the complete solution is

U(t) = e~ (A cos wpt + Bsinwpt) + % 43.7)
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where the constants A and B are to be determined from initial conditions. For a system
starting from rest, u(0) = 1 (0) = 0 and
A=-Po g P £
k k /1 —¢2
Substituting these constants in Eq. (4.3.7) gives the same result as Eq. (4.3.5). When
specialized for undamped systems this result reduces to Eq. (4.3.2), already presented in
Fig. 4.3.1c.

Equation (4.3.5) is plotted in Fig. 4.3.1c for two additional values of the damping
ratio. With damping the overshoot beyond the static equilibrium position is smaller, and
the oscillations about this position decay with time. The damping ratio determines the
amount of overshoot and the rate at which the oscillations decay. Eventually, the system
settles down to the static deformation, which is also the steady-state deformation.

4.4 RAMP OR LINEARLY INCREASING FORCE

(a)

In Fig. 4.4.1b, the applied force p(¢) increases linearly with time. Naturally, it cannot
increase indefinitely, but our interest is confined to the time duration where p(¢) is still
small enough that the resulting spring force is within the linearly elastic limit of the spring.

While the equation of motion can be solved by any one of several methods, we
illustrate use of Duhamel’s integral to obtain the solution. The applied force

p(t) = poti @4.1)

r

is substituted in Eq. (4.2.4) to obtain

1 t
u(t) = /&rsinwn(t—t)dt
mwy Jo Iy
1- -
. A = w0 ), ==
g
i Do = 2
\g ’/’
T > t O ” T T T T T 1
I 0 1 2 3
tT,
(b) ©

Figure 4.4.1 (a) SDF system; (b) ramp force; (c) dynamic and static responses.
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This integral is evaluated and simplified to obtain

) = () t sin w,,t () t T, sin2nt/T, 442)
u(t) = (ug)o | — — = (Ug)p | =—— — ———— 4.
YO\ oty YONT, 1, 27,7,

where (ug), = po/k, the static deformation due to force p,.
Equation (4.4.2) is plotted in Fig. 4.4.1c for ¢, /T, = 2.5, wherein the static deforma-

tion at each time instant,
p() t
— = (Ug)p— 443

P ()0 . ( )
is also shown; ug () varies with time in the same manner as p(¢) and the two differ by the
scale factor 1/k. It is seen that the system oscillates at its natural period 7, about the static
solution.

ug(t) =

4.5 STEP FORCE WITH FINITE RISE TIME

Since in reality a force can never be applied suddenly, it is of interest to consider a dynamic
force that has a finite rise time, #,, but remains constant thereafter, as shown in Fig. 4.5.1b:

p(t) = {Z"W”) =t 45.1)

The excitation has two phases: ramp or rise phase and constant phase.
For a system without damping starting from rest, the response during the ramp phase
is given by Eq. (4.4.2), repeated here for convenience:

1, [

u(t) = (), <5 _ sin w”t) r<t (4.5.2)

The response during the constant phase can be determined by evaluating Duhamel’s
integral after substituting Eq. (4.5.1) in Eq. (4.2.4). Alternatively, existing solutions for
free vibration and step force could be utilized to express this response as

u(ty)

n

u(t) = u(t,) cos w, (t — t,) + sinwp(t — 1,) + (us)o[l — coswn(t —1,)]  (4.5.3)

p(0) P
? u
o,
m
k
7 T » !
Figure 4.5.1 (a) SDF system; (b) step

(a) (b) force with finite rise time.
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The third term is the solution for a system at rest subjected to a step force starting at t = ¢,;
it is obtained from Eq. (4.3.2). The first two terms in Eq. (4.5.3) account for free vibration
of the system resulting from its displacement u(#,) and velocity u(¢,) at the end of the ramp
phase. Determined from Eq. (4.5.2), u(#,) and u(#,) are substituted in Eq. (4.5.3) to obtain

[(1 — COS wyt,) Sinw, (t — t,)

ner

I/t(l) = (ust)o{l +

— sin w,t, cos w, (t — t,)]} t>t, (4.5.4a)

This equation can be simplified, using a trigonometric identity, to

u(t):(us[)o{l— [sinwnt—sinwn(t—t,)]} r>1 (4.5.4b)

wpt,

The normalized deformation, u(¢)/(ug),, is a function of the normalized time, /T,
because w,t = 27 (t/T,). This function depends only on the ratio ¢, /T, because w,f, =
27 (t,/T,), not separately on 7, and 7,,. Figure 4.5.2 shows u(t)/(uy), plotted against ¢ /T,
for several values of 7, /T,,, the ratio of the rise time to the natural period. Each plot is valid
for all combinations of ¢, and 7,, with the same ratio ¢, /T,,. Also plotted is uy(t) = p(t)/k,
the static deformation at each time instant. These results permit several observations:

1. During the force-rise phase the system oscillates at the natural period 7,, about the
static solution.

2. During the constant-force phase the system oscillates also at the natural period 7,
about the static solution.

3. If the velocity u(z,) is zero at the end of the ramp, the system does not vibrate during
the constant-force phase.

4. For smaller values of ¢, /T, (i.e., short rise time), the response is similar to that due
to a sudden step force; see Fig. 4.3.1c.

5. For larger values of ¢, /T, the dynamic displacement oscillates close to the static so-
lution, implying that the dynamic effects are small (i.e., a force increasing slowly—
relative to 7,—from O to p, affects the system like a static force).

The deformation attains its maximum value during the constant-force phase of the
response. From Eq. (4.5.4a) the maximum value of u(¢) is

1

Uy = (Us)o |:1 + \/(1 — cos w,t,)? + (sin wntr)2:| (4.5.5)

Using trigonometric identities and 7,, = 27 /w,, Eq. (4.5.5) can be simplified to
u,__ . IsinGrt/T,)|
(uSt)O N ntr/Tn

The deformation response factor R; depends only on ¢, /T, the ratio of the rise time to the

R, = (4.5.6)
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Figure 4.5.2 Dynamic response of undamped SDF system to step force with finite rise
time; static solution is shown by dashed lines.

natural period. A graphical presentation of this relationship, as in Fig. 4.5.3, is called the
response spectrum for the step force with finite rise time.

This response spectrum characterizes the problem completely. In this case it contains
information on the normalized maximum response, u,/(ig),, of all SDF systems (without
damping) due to any step force p, with any rise time #,. The response spectrum permits
several observations:

1. If 1, < T,/4 (ie., a relatively short rise time), u, =~ 2(uy),, implying that the
structure “sees” this excitation like a suddenly applied force.

2. Ift, > 3T, (i.e., arelatively long rise time), u, >~ (uy),, implying that this excitation
affects the structure like a static force.



Sec. 4.6 Solution Methods 135

3. Iftt,/)T, = 1,2,3, ..., u, = (ug),, because u(t,) = 0 at the end of the force-
rise phase, and the system does not oscillate during the constant-force phase; see
Fig. 4.5.2.

2.
<
1 !
S
0 1 2 3 4

t, /T, = rise time / natural period

Figure 4.5.3 Response spectrum for step force with finite rise time.

PART C: RESPONSE TO PULSE EXCITATIONS

We next consider an important class of excitations that consist of essentially a single pulse,
such as shown in Fig. 4.6.1. Air pressures generated on a structure due to aboveground
blasts or explosions are essentially a single pulse and can usually be idealized by simple
shapes such as those shown in the left part of Fig. 4.6.2. The dynamics of structures
subjected to such excitations was the subject of much work during the 1950s and 1960s.

Force

——— Time Figure 4.6.1 Single-pulse excitation.

4.6 SOLUTION METHODS

The response of the system to such pulse excitations does not reach a steady-state condi-
tion; the effects of the initial conditions must be considered. The response of the system
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Figure 4.6.2 Expressing pulse force as superposition of simple functions: (a) rectangular pulse;
(b) half-cycle sine pulse; (c) triangular pulse.

to such pulse excitations can be determined by one of several analytical methods: (1) the
classical method for solving differential equations, (2) evaluating Duhamel’s integral, and
(3) expressing the pulse as the superposition of two or more simpler functions for which
response solutions are already available or easier to determine.

The last of these approaches is illustrated in Fig. 4.6.2 for three pulse forces. For ex-
ample, the rectangular pulse is the step function p;(¢) plus the step function p,(¢) of equal
amplitude, but after a time interval 7, has passed. The desired response is the sum of the re-
sponses to each of these step functions, and these responses can be determined readily from
the results of Section 4.3. A half-cycle sine pulse is the result of adding a sine function
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of amplitude p, starting at ¢t = 0 [p;(¢) in Fig. 4.6.2b] and another sine function of the
same frequency and amplitude starting at t = #; [p(¢) in Fig. 4.6.2b]. The desired re-
sponse is the sum of the total (transient plus steady state) responses to the two sinusoidal
forces, obtained using the results of Section 3.1. Similarly, the response to the symmetri-
cal triangular pulse is the sum of the responses to the three ramp functions in Fig. 4.6.2c;
the individual responses come from Section 4.4. Thus the third method involves adapting
existing results and manipulating them to obtain the desired response.

We prefer to use the classical method in evaluating the response of SDF systems to
pulse forces because it is closely tied to the dynamics of the system. Using the classical
method the response to pulse forces will be determined in two phases. The first is the
forced vibration phase, which covers the duration of the excitation. The second is the
free vibration phase, which follows the end of the pulse force. Much of the presentation
concerns systems without damping because, as will be shown in Section 4.11, damping
has little influence on response to pulse excitations.

4.7 RECTANGULAR PULSE FORCE

We start with the simplest type of pulse, the rectangular pulse shown in Fig. 4.7.1. The
equation to be solved is

<ty

mii—l—ku:p(t):{oo t> 1,

4.7.1)
with at-rest initial conditions: #(0) = #(0) = 0. The analysis is organized in two phases.

1. Forced vibration phase. During this phase, the system is subjected to a step force.
The response of the system is given by Eq. (4.3.2), repeated for convenience:
u(t) 2t
=1—cosw,t =1—cos
(U)o T,
2. Free vibration phase. After the force ends at 7;, the system undergoes free
vibration, defined by modifying Eq. (2.1.3) appropriately:

t<ty “4.7.2)

u(tq)

n

u(t) = u(ty) cosw,(t —ty) + sin w, (t — tg) 4.7.3)

p() p
? u A
mn i Po
i
$ 0 la t

Figure 4.7.1 (a) SDF system;
(@) (b) (b) rectangular pulse force.
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This free vibration is initiated by the displacement and velocity of the mass at t = #4,
determined from Eq. (4.7.2):

u(ty) = (ust)o[l — COS W, 1y] u(td) = (ust)oa)n sin Wnlg (474)

Substituting these in Eq. (4.7.3) gives

u(t . .
Q) = (1 — cos wy,ty) cos wy, (t — ty) + sinwyty sinw, (t — t;) t>ty
(st)o
which can be simplified, using a trigonometric identity, to
u(t)
= cosw, (t — t;) — cos wyt t>ty
(st)o
Expressing w, = 2w /T, and using trigonometric identities enables us to rewrite these
equations as
u(t . Tt . t 11
@ _ (2 sin d) sin [2n<— - -iﬂ t>1y (4.7.5)
(st)o T, T, 2T,

Response history. The normalized deformation u(z)/(uy), given by Egs. (4.7.2)
and (4.7.5) is a function of #/T,,. It depends only on t,/T,,, the ratio of the pulse duration to
the natural vibration period of the system, not separately on #; or 7,,, and has been plotted
in Fig. 4.7.2 for several values of 7;/T,. Also shown in dashed lines is the static solution
ug(t) = p(t)/k at each time instant due to p(¢). The nature of the response is seen to
vary greatly by changing just the duration #; of the pulse. However, no matter how long
the duration, the dynamic response is not close to the static solution, because the force is
suddenly applied.

While the force is applied to the structure, the system oscillates about the shifted
position, (uy), = p,/k, atits own natural period 7,,. After the pulse has ended, the system
oscillates freely about the original equilibrium position at its natural period 7,, with no
decay of motion because the system is undamped. If 7;,/7, = 1, 2, 3, ..., the system
stays still in its original undeformed configuration during the free vibration phase, because
the displacement and velocity of the mass are zero when the force ends.

Each response result of Fig. 4.7.2 is applicable to all combinations of systems and
forces with fixed #;/7,. Implicit in this figure, however, is the presumption that the natural
period T, of the system is constant and the pulse duration ¢, varies. By modifying the time
scale, the results can be presented for a fixed value of #; and varying values of 7.

Maximum response. Over each of the two phases, forced vibration and free
vibration, separately, the maximum value of response is determined next. The larger of the
two maxima is the overall maximum response.

The number of local maxima or peaks that develop in the forced vibration phase
depends on #;/T, (Fig. 4.7.2); more such peaks occur as the pulse duration lengthens. The
first peak occurs at t, = T,,/2 with the deformation

Up = 2(“5()0 (476)
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Figure 4.7.2 Dynamic response of undamped SDF system to rectangular pulse force;
static solution is shown by dashed lines.

consistent with the results derived in Section 4.3. Thus 7, must be longer than 7,,/2 for at
least one peak to develop during the forced vibration phase. If more than one peak develops
during this phase, they all have this same value and occur at t, = 37,,/2, 5T, /2, and so on,
again consistent with the results of Section 4.3.

As a corollary, if #; is shorter than 7,,/2, no peak will develop during the forced
vibration phase (Fig. 4.7.2), and the response simply builds up from zero to u(t;). The
displacement at the end of the pulse is given by Eq. (4.7.4a), rewritten to emphasize the
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parameter t;/T,:

< 27Tld>
u(ty) = (us)o [ 1 — cos 4.7.7)

The maximum deformation during the forced vibration phase, Egs. (4.7.6) and (4.7.7),
can be expressed in terms of the deformation response factor:

%o { 1 —cosQrty/T,)  ta)T, (4.7.8)

R <
¢ 2 ta/T, >

B |—=b|—

- (ust)o B

This relationship is shown as “forced response” in Fig. 4.7.3a.

In the free vibration phase the system oscillates in simple harmonic motion, given by
Eq. (4.7.3), with an amplitude

Uy = \/ [u(t) 2 + [”g")r (4.7.9)
27 e uiniabaiaivie St A Forced response
s AN / N\ /N
§ / / : i ' ' \ Free response
@ / / ) ] \ .
<N
/i \/ \/
0 : y : y . .
0 1 11T, 2 3
21 Overall maximum
’55
3
(b) o1y
%
% 1 ' 2 3
1/ T,

Figure 4.7.3 Response to rectangular pulse force: (a) maximum response during each of
forced vibration and free vibration phases; (b) shock spectrum.
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which after substituting Eq. (4.7.4) and some manipulation becomes

T,
Uy = 2(tg), [sin = (4.7.10)
The corresponding deformation response factor,
Uo . Tl
R, = = 2 |sin (4.7.11)
(uSt)D Tn

depends only on f;/T,, and is shown as “free response” in Fig. 4.7.3a.

Having determined the maximum response during each of the forced and free vi-
bration phases, we now determine the overall maximum. Figure 4.7.3a shows that if
ta/T, > %, the overall maximum is the peak (or peaks because all are equal) in u(z)
that develops during the forced vibration phase because it will not be exceeded in free vi-
bration; see Fig. 4.7.2 for t,/T,, = 1.25. This observation can also be deduced from the
mathematical results: the R; of Eq. (4.7.11) for the free vibration phase can never exceed
the R; = 2, Eq. (4.7.8b), for the forced vibration phase.

Ift,/)T, < %, Fig. 4.7.3a shows that the overall maximum is the peak (or peaks
because all are equal) in u(¢) that develops during the free vibration phase. In this case the
response during the forced vibration phase has built up from zero at ¢+ = 0 to u(#;) at the
end of the pulse, Eq. (4.7.7), and u(#;) given by Eq. (4.7.4b) is positive; see Fig. 4.7.2 for
ta/T, = % or }t. As a result, the first peak in free vibration is larger than u(#,).

Finally, if t; /T, = %, Fig. 4.7.3a shows that the overall maximum is given by either
the forced-response maximum or the free-response maximum because the two are equal.
The first peak occurs exactly at the end of the forced vibration phase (Fig. 4.7.2), the
velocity u(t;) = 0, and the peaks in free vibration are the same as u(;). This observation is
consistent with Eqs. (4.7.8) and (4.7.11) because both of them give R; = 2 for #;/T,, = %

In summary, the deformation response factor that defines the overall maximum re-
sponse is

Uop { 251n77:td/Tn td/Tn (4712)

7 (Mst)o - 2 td/Tn

IV 1A
=] —

Clearly, R; depends only on #;/T,, the ratio of the pulse duration to the natural period of
the system, not separately on #; or 7,,. This relationship is shown in Fig. 4.7.3b.

Such a plot, which shows the maximum deformation of an SDF system as a function
of the natural period 7,, of the system (or a related parameter), is called a response spec-
trum. When the excitation is a single pulse, the terminology shock spectrum is also used
for the response spectrum. Figure 4.7.3b then is the shock spectrum for a rectangular pulse
force. The shock spectrum characterizes the problem completely.

The maximum deformation of an undamped SDF system having a natural period 7,
to a rectangular pulse force of amplitude p, and duration 7; can readily be determined if
the shock spectrum for this excitation is available. Corresponding to the ratio #;/7,,, the
deformation response factor R, is read from the spectrum, and the maximum deformation
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is computed from
Po

U, = (Us)oRa = IRd (4.7.13)
The maximum value of the equivalent static force (Section 1.8.2) is
fso=ku, = pyRa (4.7.14)

that is, the applied force p, multiplied by the deformation response factor. As mentioned
in Section 1.8.2, static analysis of the structure subjected to fs, gives the internal forces
and stresses.

Example 4.1

A one-story building, idealized as a 12-ft-high frame with two columns hinged at the base and
arigid beam, has a natural period of 0.5 sec. Each column is an American standard wide-flange
steel section W8 x 18. Its properties for bending about its major axis are /, = 61.9 in*, § =
I:/c = 15.2in%; E = 30,000 ksi. Neglecting damping, determine the maximum response of
this frame due to a rectangular pulse force of amplitude 4 kips and duration 7; = 0.2 sec. The
response quantities of interest are displacement at the top of the frame and maximum bending
stress in the columns.

Solution
1. Determine Ry.

w02
fa _ 92 _ 4
T, 05
1
Ry = —2 = 2sin =4 = 25in(0.47) = 1.902

- (ust)o n
2. Determine the lateral stiffness of the frame.
3EI 3(30,000)61.9

ST = 1.865 kips/in.

kcol =

k =2 x 1.865 = 3.73 kips/in.
3. Determine (ug),.

4
Po_ 2 _107in
k373

4. Determine the maximum dynamic deformation.

Uy = (us)oRqg = (1.07)(1.902) = 2.04 in.

(st)o =

5. Determine the bending stress. The resulting bending moments in each column are
shown in Fig. E4.1c. At the top of the column the bending moment is largest and is given by

_3EI [3(30,000)61‘9
= o= |

Fu (12 % 12)2 ]2.04 = 547.8 kip-in.

Alternatively, we can find the bending moment from the equivalent static force:

fso = poRa = 4(1.902) = 7.61 kips
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Rigid

547.8 kip-in.

uO %
Q V 36.04 ksi
7. 7.
(b) (©

(d)

12

(@
Figure E4.1

Because both columns are identical in cross section and length, the force fs, will be shared
equally. The bending moment at the top of the column is

7.61
M= fgf’h = <T) 12 x 12 = 547.8 kip-in.

The bending stress is largest at the outside of the flanges at the top of the columns:

M 5478 36.04 ki
— = —— =36. si
S 15.2

The stress distribution is shown in Fig. E4.1d.

4.8 HALF-CYCLE SINE PULSE FORCE

The next pulse we consider is a half-cycle of sinusoidal force (Fig. 4.8.1b). The response
analysis procedure for this pulse is the same as developed in Section 4.7 for a rectangular
pulse, but the mathematical derivation becomes a little complicated. The solution of the
governing equation

Do sin(mwt /1) 1=la (4.8.1)

mﬁ+ku:p(t):{0 t>ty

with at-rest initial conditions is presented separately for (1) w = 7 /t; # w, or t4/T, # %
and Q)w =w, orty /T, = % For each case the analysis is organized in two phases: forced
vibration and free vibration.

p() P
? u
[
m
k
7. ! > !
Figure 4.8.1 (a) SDF system;

(@) (b) (b) half-cycle sine pulse force.
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Case 1: tq/T, # 3

Forced Vibration Phase. The force is the same as the harmonic force p(t) =
P, sinwt considered earlier with frequency w = m/t;. The response of an undamped
SDF system to such a force is given by Eq. (3.1.6b) in terms of @ and w,, the excitation
and natural frequencies. The excitation frequency w is not the most meaningful way of
characterizing the pulse because, unlike a harmonic force, it is not a periodic function. A
better characterization is the pulse duration f;, which will be emphasized here. Using the
relations w = 7/t; and w, = 27/T,, and defining (uy), = p,/k, as before, Eq. (3.1.6b)
becomes

u(r) 1 , t T, . t
= 5 [sm(n—) — —sin <2n—):| t<ty (4.8.2)
(ust)o 1 - (T;’I/th) Iq 2td Tn

Free Vibration Phase.  After the force pulse ends, the system vibrates freely with its
motion described by Eq. (4.7.3). The displacement u(z,) and velocity u(,;) at the end of the
pulse are determined from Eq. (4.8.2). Substituting these in Eq. (4.7.3), using trigonometric
identities and manipulating the mathematical quantities, we obtain

u®)  (T,/tg)cos(nta/T,) . 1y
o (G202 —1 [2”<Tn 2@)] 121 (4.8.3)

Case2: tq/T, =

Forced Vibration Phase. The forced response is now given by Eq. (3.1.13b), re-
peated here for convenience:

u(t) 1(, 2wt 2wt 2m>
= Sin

5 cos <ty (4.8.4)

(us)o 2 , T, T,

Free Vibration Phase.  After the force pulse ends at t = 14, free vibration of the
system is initiated by the displacement u(#;) and velocity u(z;) at the end of the force
pulse. Determined from Eq. (4.8.4), these are

ulta) _m .

=— u(ty) =0 (4.8.5)

(st)o 2

The second equation implies that the displacement in the forced vibration phase reaches its

maximum at the end of this phase. Substituting Eq. (4.8.5) in Eq. (4.7.3) gives the response
of the system after the pulse has ended:

“) _ 7 oL 1> (4.8.6)
= —COoSZmw|{ — — — 0.
(i) o 2 T, 2 =

Response history. The time variation of the normalized deformation, u(r)/
(ust)o, given by Egs. (4.8.2) and (4.8.3) is plotted in Fig. 4.8.2 for several values of t,;/T,.
For the special case of 7, /T, = % Egs. (4.8.4) and (4.8.6) describe the response of the syst-
em, and these are also plotted in Fig. 4.8.2. The nature of the response is seen to vary greatly
by changing just the duration 7, of the pulse. Also plotted in Fig. 4.8.2 is uy () = p(¢) /k,
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Figure 4.8.2 Dynamic response of undamped SDF system to half-cycle sine pulse force;
static solution is shown by dashed lines.

varying slowly relative to the natural period 7,, of the system.

The response during the force pulse contains both frequencies w and w, and it is
positive throughout. After the force pulse has ended, the system oscillates freely about
its undeformed configuration with constant amplitude for lack of damping. If #,/7, =
1.5, 2.5, ..., the mass stays still after the force pulse ends because both the displacement
and velocity of the mass are zero when the force pulse ends.
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the static solution. The difference between the two curves is an indication of the dynamic
effects, which are seen to be small for 7, = 37, because this implies that the force is
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Maximum response. As in the preceding section, the maximum values of
response over each of the two phases, forced vibration and free vibration, are determined
separately. The larger of the two maxima is the overall maximum response.

During the forced vibration phase, the number of local maxima or peaks that develop
depends on t;/T, (Fig. 4.8.2); more such peaks occur as the pulse duration lengthens.
The time instants 7, when the peaks occur are determined by setting to zero the velocity
associated with u(¢) of Eq. (4.8.2), leading to

t, 2mt,
CcOs — = COsS
1q n

This equation is satisfied by

F2I
L3 2(ta/To)
where the negative signs (numerator and denominator) are associated with local minima
and the positive signs with local maxima. Thus the local maxima occur at time instants

21
—_— 1
1+ 2(14/T,)

While this gives an infinite number of (¢,); values, only those that do not exceed #,; are
relevant. For #;/T, = 3, Eq. (4.8.8) gives three relevant time instants: 7, = %td, étd,

(to) = =123, ... (4.8.7)

(o) = =123, ... (4.8.8)

and gtd; Il = 4 gives t, = %td, which is not valid because it exceeds #;. Substituting in
Eq. (4.8.2) the (1,); values of Eq. (4.8.8) gives the local maxima u,,, which can be expressed
in terms of the deformation response factor:

u, 1 . 2ml T, . 2l
R; = = sin — —sin —— (4.8.9)
(us)o 1= (T,/2t4)? 1+2t4/T,  2tq  14T,/21

Figure 4.8.3a shows these peak values plotted as a function of #;/7,. For each t,/T,
value the above-described computations were implemented and then repeated for many
ty/T, values. If 0.5 < #;,/T, < 1.5, only one peak, [ = 1, occurs during the force
pulse. A second peak develops if #;/T, > 1.5, but it is smaller than the first peak if
1.5 < t;/T, < 2.5. A third peak develops if #;/T, > 2.5. The second peak is larger than
the first and third peaks if 2.5 < t;/T, < 4.5. Usually, we will be concerned only with the
largest peak because that controls the design of the system. The shock spectrum for the
largest peak of the forced response is shown in Fig. 4.8.3b.

Ift;/T, < %, no peak occurs during the forced vibration phase (Fig. 4.8.2). This
becomes clear by examining the time of the first peak, Eq. (4.8.8), with [ = 1:

2
t, = ——1,
T 1+2t9)T, ¢
If this 7, exceeds 7,4, and it does for all 7; < 7, /2, no peak develops during the force pulse;
the response builds up from zero to u(z;), obtained by evaluating Eq. (4.8.2) att = #;:
M([d) Tn/2td . <
= 5 sin
(Ust)o (Tn/ztd) -1

2 L (4.8.10)
T — 0.
T,
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Largest peak of the forced response is:
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Figure 4.8.3 Response to half-cycle sine pulse force: (a) response maxima during forced
vibration phase; (b) maximum responses during each of forced vibration and free vibration
phases; (c) shock spectrum.

147

This is the maximum response during the forced vibration phase and it defines the defor-

mation response factor over the range 0 < 7,/7T, < % in Fig. 4.8.3a and b.

In the free vibration phase the response of a system is given by the sinusoidal function

of Eq. (4.8.3), and its amplitude is

up  (Ty/ta) cos(mty/T))
R, =

U)o (T/2ta)* — 1

(4.8.11)
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This equation describes the maximum response during the free vibration phase and is plot-
ted in Fig. 4.8.3b.

For the special case of t,/T,, = % the maximum response during each of the forced
and free vibration phases can be determined from Eqgs. (4.8.4) and (4.8.6), respectively; the
two maxima are the same:

Uo

T
R; = = — 4.8.12
T e 2 (48.12)

The overall maximum response is the larger of the two maxima determined sepa-
rately for the forced and free vibration phases. Figure 4.8.3b shows that if t; > T,/2,
the overall maximum is the largest peak that develops during the force pulse. On the
other hand, if t; < T,/2, the overall maximum is given by the peak response during the
free vibration phase. For the special case of r; = 7,,/2, as mentioned earlier, the two
individual maxima are equal. The overall maximum response is plotted against #;/7,
in Fig. 4.8.3c; for each #,/T, it is the larger of the two plots of Fig. 4.8.3b. This is
the shock spectrum for the half-cycle sine pulse force. If it is available, the maximum
deformation and equivalent static force can readily be determined using Eqs. (4.7.13)
and (4.7.14).

4.9 SYMMETRICAL TRIANGULAR PULSE FORCE

Consider next an SDF system initially at rest and subjected to the symmetrical triangular
pulse shown in Fig. 4.9.1. The response of an undamped SDF system to this pulse could
be determined by any of the methods mentioned in Section 4.6. For example, the classical
method could be implemented in three separate phases: 0 <t <1t;/2,1;,/2 <t < t4, and
t > t4. The classical method was preferred in Sections 4.8 and 4.9 because it is closely
tied to the dynamics of the system, but is abandoned here for expedience. Perhaps the
easiest way to solve the problem is to express the triangular pulse as the superposition
of the three ramp functions shown in Fig. 4.6.2c. The response of the system to each of
these ramp functions can readily be determined by appropriately adapting Eq. (4.4.2) to
recognize the slope and starting time of each of the three ramp functions. These three
individual responses are added to obtain the response to the symmetrical triangular pulse.

p) p
? u
[
m
k
7;%/
Figure 4.9.1 (a) SDF system;

(@) (b) (b) triangular pulse force.
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Figure 4.9.2 Dynamic response of undamped SDF system to triangular pulse force; static
solution is shown by dashed lines.
The final result is
t T, . t t
2( = - L sin2r— 0<r<< (49.1a)
ty 2ty T, 2
t T, . 2w 1 ) t !
21— — 4+ " |2sin=—(t— =ty ) —sin2mr — —dftftd (4.9.1b)
ty 2ty T, 2 T, 2
T, 2 1 . 27 ) t
21— [2sin=—(r— =15 ) —sin =—(¢ — 1) — sin 27w — t>1y (4.9.1¢c)
27Ttd n 2 Tn Tn
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The variation of the normalized dynamic deformation u(#)/(us), and of the static solution
ug(t)/(us), with time is shown in Fig. 4.9.2 for several values of #;/7,. The dynamic
effects are seen to decrease as the pulse duration #; increases beyond 27,,. The first peak
develops right at the end of the pulse if 7, = T,,/2, during the pulse if 7z, > 7,,/2, and
after the pulse if z; < T,,/2. The maximum response during free vibration (Fig. 4.9.3a)
was obtained by finding the maximum value of Eq. (4.9.1c). The corresponding plot for
maximum response during the forced vibration phase (Fig. 4.9.3a) was obtained by finding
the largest of the local maxima of Eq. (4.9.1b), which is always larger than the maximum
value of Eq. (4.9.1a).

The overall maximum response is the larger of the two maxima determined sepa-
rately for the forced and free vibration phases. Figure 4.9.3a shows that if z; > T,/2, the
overall maximum is the largest peak that develops during the force pulse. On the other
hand, if t; < T, /2, the overall maximum is the peak response during the free vibration
phase, and if t; = T,,/2, the forced and free response maxima are equal. The overall max-

imum response is plotted against #;/7, in Fig. 4.9.3b. This is the shock spectrum for the
symmetrical triangular pulse force.

2.
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Figure 4.9.3 Response to triangular pulse force: (a) maximum response during each of forced
vibration and free vibration phases; (b) shock spectrum.
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4.10 EFFECTS OF PULSE SHAPE AND APPROXIMATE ANALYSIS
FOR SHORT PULSES

The shock spectra for the three pulses of rectangular, half-cycle sine, and triangular shapes,
each with the same value of maximum force p,, are presented together in Fig. 4.10.1. As
shown in the preceding sections, if the pulse duration #; is longer than 7,,/2, the overall
maximum deformation occurs during the pulse. Then the pulse shape is of great signifi-
cance. For the larger values of #;/T,, this overall maximum is influenced by the rapidity
of the loading. The rectangular pulse in which the force increases suddenly from zero to
Do produces the largest deformation. The triangular pulse in which the increase in force is
initially slowest among the three pulses produces the smallest deformation. The half-cycle
sine pulse in which the force initially increases at an intermediate rate causes deformation
that for many values of #;/T, is larger than the response to the triangular pulse.

If the pulse duration ¢, is shorter than 7,,/2, the overall maximum response of the
system occurs during its free vibration phase and is controlled by the time integral of the
pulse. This can be demonstrated by considering the limiting case as 7;/7, approaches
zero. As the pulse duration becomes extremely short compared to the natural period of the
system, it becomes a pure impulse of magnitude

7= fd p(t)dt (4.10.1)
0

The response of the system to this impulsive force is the unit impulse response of
Eq. (4.1.6) times Z:

sin a),J) (4.10.2)

/ Po
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// \\\\ Po |
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Figure 4.10.1 Shock spectra for three force pulses of equal amplitude.
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The maximum deformation,

I I2m
mw, kT,

(4.10.3)

Uy =
is proportional to the magnitude of the impulse.
Thus the maximum deformation due to the rectangular impulse of magnitude 7 =
Pola is
Uo 7

. (4.10.4)
(uSt)() T}‘l

that due to the half-cycle sine pulse with Z = (2/7) p,t; is

(““) =4IT—“’ (4.10.5)
Ust)o n

and that due to the triangular pulse of magnitude Z = p,t;/2 is

Uy lq
=72 (4.10.6)
(Mst)o 7-;1

These pure impulse solutions, which vary linearly with #,/7, (Fig. 4.10.1), are exact if
ts/T, = 0O; for all other values of #,, they provide an upper bound to the true maximum
deformation since the effect of the pulse has been overestimated by assuming it to be
concentrated at ¢ = 0 instead of being spread out over 0 to z;. Over the range 7;/T,, < 1, the
pure impulse solution is close to the exact response. The two solutions differ increasingly
as t,/ T, increases up to % For larger values of #;/T,, the deformation attains its overall
maximum during the pulse and the pure impulse solution is meaningless because it assumes
that the maximum occurs in free vibration.

The preceding observations suggest that if the pulse duration is much shorter than the
natural period, say t; < T, /4, the maximum deformation should be essentially controlled
by the pulse area, independent of its shape. This expectation is confirmed by considering
the rectangular pulse of amplitude p,/2, the triangular pulse of amplitude p,, and the
half-cycle sine pulse of amplitude (7 /4) p,; these three pulses have the same area: % Dold-
For these three pulses, the shock spectra, determined by appropriately scaling the plots of
Fig. 4.10.1, are presented in Fig. 4.10.2; observe that the quantity plotted now is u, = p, /k,
where p, is the amplitude of the triangular pulse but not of the other two. Equation (4.10.3)
withZ = % Pota gives the approximate result

U, ty
=1 4.10.7
Po/k g T, ( )

which is also shown in Fig. 4.10.2. It is clear that for 7; < T,,/4, the shape of the pulse has
little influence on the response and the response can be determined using only the pulse
area. This conclusion is valid even if the pulse has a complicated shape.
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Figure 4.10.2 Shock spectra for three force pulses of equal area.
Example 4.2

The 80-ft-high full water tank of Example 2.7 is subjected to the force p(¢) shown in Fig. E4.2,
caused by an aboveground explosion. Determine the maximum base shear and bending mo-
ment at the base of the tower supporting the tank.

Solution For this water tank, from Example 2.7, weight w = 100.03 kips, k = 8.2 kips/in.
T, = 1.12 sec, and ¢ = 1.23%. The ratio t4/T, = 0.08/1.12 = 0.071. Because t;/7T, <
0.25, the forcing function may be treated as a pure impulse of magnitude

0-08 0.02
7= / p(t)dt = T [0 + 2(40) + 2(16) + 2(4) + 0] = 1.2 kip-sec
0

where the integral is calculated by the trapezoidal rule. Neglecting the effect of damping, the
maximum displacement is
(1.2)27

Lo (22 o,
kT, (8.2)(1.12)

The equivalent static force fs, associated with this displacement is [from Eq. (1.8.1)]
fso = kuy, = (8.2)0.821 = 6.73 kips

The resulting shearing forces and bending moments over the height of the tower are shown in
Fig. E4.2. The base shear and moment are V;, = 6.73 kips and M), = 538 kip-ft.

6.73 kips  6.73 kips
. —

Uop

p(t) —
2 80’
<
. 1, sec
g 3 & & .
S o o IS - Y — 538 kip-ft
Shears Moments

Figure E4.2
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4.11 EFFECTS OF VISCOUS DAMPING

If the excitation is a single pulse, the effect of damping on the maximum response is usu-
ally not important unless the system is highly damped. This is in contrast to the results
of Chapter 3, where damping was seen to have an important influence on the maximum
steady-state response of systems to harmonic excitation at or near resonance.

For example, if the excitation frequency of harmonic excitation is equal to the natural
frequency of the system, a tenfold increase in the damping ratio ¢, from 1% to 10%, results
in a tenfold decrease in the deformation response factor R;, from 50 to 5. Damping is so
influential because of the cumulative energy dissipated in the many (the number depends
on ¢) vibration cycles prior to attainment of steady state; see Figs. 3.2.2, 3.2.3, and 3.2.4.

In contrast, the energy dissipated by damping is small in systems subjected to pulse-
type excitations. Consider a viscously damped system subjected to a half-cycle sine pulse
with t; /T, = % (which implies that o = w,) and ¢ = 0.1. The variation of deformation
with time (Fig. 4.11.1a) indicates that the maximum deformation (point b) is attained at

ug (D) (Us)o

14 \/'_\
~

a \ (a)
1A d

0 0.25 0.5 0.75 1
t/'T,

u(t) / (usp),
(]

Dissipated fs=ku

Ir energy

(b)

(fs+/p) ! po
N o
\

M/ (ust)o

Figure 4.11.1 (a) Response of damped system (¢ = 0.1) to a half-cycle sine pulse force with
ta/T, = %; (b) force—deformation diagram showing energy dissipated in viscous damping.
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0 ' 1 ' 2 ' 3 ' 4
ty! T,

Figure 4.11.2 Shock spectra for a half-cycle sine pulse force for five damping values.

the end of the pulse before completion of a single vibration cycle. The total (elastic plus
damping) force—deformation diagram of Fig. 4.11.1b indicates that before the maximum
response is reached, the energy dissipated in viscous damping is only the small shaded area
multiplied by p2/k. Thus the influence of damping on maximum response is expected to
be small.

This prediction is confirmed by the shock spectrum for the half-cycle sine pulse
presented in Fig. 4.11.2. For ¢ = 0, this spectrum is the same as the spectrum of Fig. 4.8.3¢
for undamped systems. For ¢ # 0 and for each value of #;/7,, the dynamic response of
the damped system was computed by a numerical time-stepping procedure (Chapter 5)
and the maximum deformation was determined. In the case of the system acted upon by
a half-cycle sine pulse of duration t; = T,/2, increase in the damping ratio from 1% to
10% reduces the maximum deformation by only 12%. Thus a conservative but not overly
conservative estimate of the response of many practical structures with damping to pulse-
type excitations may be obtained by neglecting damping and using the earlier results for
undamped systems.

4.12 RESPONSE TO GROUND MOTION

The response spectrum characterizing the maximum response of SDF systems to ground
motion i, (t) can be determined from the response spectrum for the applied force p(r)
with the same time variation as iiy(¢). This is possible because as shown in Eq. (1.7.6), the
ground acceleration can be replaced by the effective force, pes(t) = —miig(t).

The response spectrum for applied force p(t) is a plot of R; = u,/(uy),, where
(U)o = po/k, versus the appropriate system and excitation parameters: /w, for
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harmonic excitation and ¢#;/T,, for pulse-type excitation. Replacing p, by (pefr), gives

( )0 ml;t. (g i'i o
() = ~o00 = T80 = 2 (4.12.1)

n

where iig, is the maximum value of ii, (t) and the negative sign in pes(¢) has been dropped.
Thus

2
Uy Wl

Ry = = —
(ust)o Ugo

(4.12.2)

Therefore, the response spectra presented in Chapters 3 and 4 showing the response u,,/ (i),
due to applied force also give the response w?u, /iy, to ground motion.

For undamped systems subjected to ground motion, Eqgs. (1.7.4) and (1.7.3) indi-
cate that the total acceleration of the mass is related to the deformation through i’ () =
—w?u(t). Thus the maximum values of the two responses are related by i, = w2u,.

Substituting in Eq. (4.12.2) gives
Ri=—* (4.12.3)

Thus the earlier response spectra showing the response u,/(ug), of undamped systems
subjected to applied force also display the response i’ /ii4, to ground motion.

As an example, the response spectrum of Fig. 4.8.3c for a half-cycle sine pulse force
also gives the maximum values of responses w?u, /iigz, and ii! /ii 4, due to ground acceler-
ation described by a half-cycle sine pulse.

Example 4.3

Consider the SDF model of an automobile described in Example 3.4 running over the speed
bump shown in Fig. E4.3 at velocity v. Determine the maximum force developed in the
suspension spring and the maximum vertical acceleration of the mass if (a) v = 5 mph, and
(b) v = 10 mph.

0.8 kip/in.g L (=04

Half-cycle sine function

. 4
T T

Figure E4.3
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Solution
1. Determine the system and excitation parameters.

_ 4000 _ 10.363 1b-sec?/i
m = 56—V -sec” /in.

k = 800 1b/in.
w, = 8.786 rad/sec T, = 0.715 sec

3 t
v = 5 mph = 7.333 ft/sec ty = ——= = 0.4091 sec 4 _ 0572

7.333 T,
td
= 10 mph = 14.666 ft/s tg = = 0.2046 s — =0.286
v mp /sec d = T1cce sec T,
The vertical ground displacement ug (1) = 6sin(xt/ty) for 0 < t < t; and is zero for

t <0Oandt > t;. Two differentiations lead to an equation for ground acceleration: iig () =
— (672 / 15) sin(rrt/t7) plus terms containing delta functions. The latter terms are due to the
kink in the ground profile at the beginning and the end of the speed bump (Fig. E4.3). As
a result, the ground acceleration is not a single pulse—in contrast to the ground displace-
ment. Thus, the method presented in Section 4.12 is not applicable unless the latter terms
are dropped, an approximation that may be appropriate at very low speeds. Such an approx-
imate solution is presented to illustrate application of the method. With this approximation,
ligo = 617 /1.
2. Determine Ry for the ty /T, values above from Fig. 4.11.2.

1.015 v = 5 mph

Ri=10639  v=10mpn

Obviously, R; cannot be read accurately to three or four significant digits; these values are
from the numerical data used in plotting Fig. 4.11.2.
3. Determine the maximum force, fs,.

ii 7,\*
up =Ry =15 (—”) R4
o td

2

1

1.5 —== ) 1.015 =4.65 in. v = 5 mph
0.572

Uog = | 2
15(—=—) 0639=117in. v =10mph
0.286
_ _ _ |3.72 kips v =5 mph
fso =kuo =08uo=19'37kips v = 10 mph

Observe that the force in the suspension is much larger at the higher speed. The large defor-
mation of the suspension suggests that it may deform beyond its linearly elastic limit.

4. Determine the maximum acceleration, ii',. Equation (4.12.3) provides a relation
between i}, and Ry that is exact for systems without damping but is approximate for damped
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systems. These approximate results can readily be obtained for this problem:

vt 672
u, = ug()Rd = t—sz

d

672 i 5
—— | 1.015 = 359.1 in. /sec v =5 mph
(0.4091)2

p
Uy

- 67‘[2 . 2
——— 1 0.639 = 903.7 in. /sec v = 10 mph
(0.2046)2

Observe that the acceleration of the mass is much larger at the higher speed; in fact, it exceeds
1g, indicating that the SDF model would lift off from the road.

To evaluate the error in the approximate solution for i!, a numerical solution of the
equation of motion was carried out, leading to the “exact” value of ii!, = 422.7 in./sec? for
v = 5 mph.

FURTHER READING

Ayre, R. S., “Transient Response to Step and Pulse Functions,” Chapter 8 in Shock and Vibration
Handbook, 3rd ed. (ed. C. M. Harris), McGraw-Hill, New York, 1988.

Jacobsen, L. S., and Ayre, R. S., Engineering Vibrations, McGraw-Hill, New York, 1958, Chapters 3
and 4.

PROBLEMS

Part A

4.1  Show that the maximum deformation uq of an SDF system due to a unit impulse force, p(t) =

8(1), is
/1 — ¢2
exp(— d A )

]_gztan :

Plot this result as a function of {. Comment on the influence of damping on the maximum
response.

Uy, =
mwy

4.2  Consider the deformation response g(¢) of an SDF system to a unit step function p(t) = 1,
t > 0, and h(z) due to a unit impulse p(t) = §(z). Show that h(r) = g(z).

4.3  An SDF undamped system is subjected to a force p(z) consisting of a sequence of two im-
pulses, each of magnitude /, as shown in Fig. P4.3.
(a) Plot the displacement response of the system for #;/7,, = %, %, and 1. For each case show
the response to individual impulses and the combined response.



Chap. 4 Problems 159

44
4.5

4.6

p

tq

Figure P4.3

(b) Plot u, =+ (I /mwy) as a function of 74 /T,,. Indicate separately the maximum occurring at
t <tgandt > tg. Such a plot is called the response spectrum for this excitation.

Repeat Problem 4.3 for the case of the two impulses acting in the same direction.

(a) Show that the motion of an undamped system starting from rest due to a suddenly applied
force p, that decays exponentially with time (Fig. P4.5) is

u(t) 1 a —at
= 3 — SIn wyt — coS wut + e
(tst)o 1+ az/(t)n Wp

Note that a has the same units as w,,.
(b) Plot this motion for selected values of a/w, = 0.01, 0.1, and 1.0.
(¢) Show that the steady-state amplitude is

Uy 1

(uS[)D B 1/]‘_f_az/a)%

When is the steady-state motion reached?

at

p)=pe

> !  Figure P4.5

(a) Determine the motion of an undamped system starting from rest due to the force p(r)
shown in Fig. P4.6; b > a.
(b) Plot the motion for b = 2a for three values of a/w, = 0.05, 0.1, and 0.5.

P =p (=)

! Figure P4.6
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Part B

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Using the classical method for solving differential equations, derive Eq. (4.4.2), which de-
scribes the response of an undamped SDF system to a linearly increasing force; the initial
conditions are u(0) = u(0) = 0.

An elevator is idealized as a weight of mass m supported by a spring of stiffness k. If the
upper end of the spring begins to move with a steady velocity v, show that the distance u' that
the mass has risen in time ¢ is governed by the equation

mii' + ku' = kvt
If the elevator starts from rest, show that the motion is

u' (1) = vt — X sin w, 1
n

Plot this result.
(a) Determine the maximum response of a damped SDF system to a step force.
(b) Plot the maximum response as a function of the damping ratio.
The deformation response of an undamped SDF system to a step force having finite rise time
is given by Egs. (4.5.2) and (4.5.4). Derive these results using Duhamel’s integral.
Derive Egs. (4.5.2) and (4.5.4) by considering the excitation as the sum of two ramp functions
(Fig. P4.11). For ¢t < t., u(t) is the solution of the equation of motion for the first ramp
function. For # > #,, u(¢) is the sum of the responses to the two ramp functions.

/p](t) =p0[/tr

Po

. t

AN
\

\

\
N pa(t) = =polt = 1)ty Figure P4.11

The elevated water tank of Fig. P4.12 weighs 100.03 kips when full with water. The tower
has a lateral stiftness of 8.2 kips/in. Treating the water tower as an SDF system, estimate
the maximum lateral displacement due to each of the two dynamic forces shown without any
“exact” dynamic analysis. Instead, use your understanding of how the maximum response
depends on the ratio of the rise time of the applied force to the natural vibration period of the
system; neglect damping.

An SDF system with natural vibration period 7}, is subjected to an alternating step force
(Fig. P4.13). Note that p(¢) is periodic with period 7,,.

(a) Determine the displacement as a function of time; the initial conditions are u(0) =
u(0) = 0.

(b) Plot the response.
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(c) Show that the displacement peaks are given by u, /(ug), = (=1)""12n, where n is the
number of half cycles of p(z).

Part C

4.14 Determine the response of an undamped system to a rectangular pulse force of amplitude
po and duration 7; by considering the pulse as the superposition of two step excitations
(Fig. 4.6.2).

4.15 Using Duhamel’s integral, determine the response of an undamped system to a rectangular
pulse force of amplitude p, and duration #,.

4.16 Determine the response of an undamped system to a half-cycle sine pulse force of amplitude
Do and duration #; by considering the pulse as the superposition of two sinusoidal excitations
(Fig. 4.6.2); tq/ Ty # 3.

4.17 The one-story building of Example 4.1 is modified so that the columns are clamped at the
base instead of hinged. For the same excitation determine the maximum displacement at the
top of the frame and maximum bending stress in the columns. Comment on the effect of base
fixity.
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4.18

4.19

4.20

4.21
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Determine the maximum response of the frame of Example 4.1 to a half-cycle sine pulse force
of amplitude p, = 5 kips and duration z; = 0.25 sec. The response quantities of interest are:
displacement at the top of the frame and maximum bending stress in columns.

An SDF undamped system is subjected to a full-cycle sine pulse force (Fig. P4.19).

(a) Derive equations describing u(¢) during the forced and free vibration phases.

(b) Plot the response u(t)/(ust)o versus t/T, for various values of 7;/7,; on the same plots
show the static response ug (1) /(Us)o-

(¢) Determine the peak response u,, defined as the maximum of the absolute value of u(%),
during (i) the forced vibration phase, and (ii) the free vibration phase.

(d) Plot Ry = u,/(ug), for each of the two phases as a function of 4 /7T},.

(e) Plot the shock spectrum.

Figure P4.19

Derive equations (4.9.1) for the displacement response of an undamped SDF system to a sym-
metrical triangular pulse by considering the pulse as the superposition of three ramp functions
(Fig. 4.6.2).

An undamped system is subjected to the triangular pulse in Fig. P4.21.

(a) Show that the displacement response is

t 1 T,\ . 2mt
— — — [ = }sin 0<t=<t4
u(t) tg 2w\t Ta
(Mst)() cos 2w (t ; ) n 1 T, sin 27 ([ p ) 1 T, sin 2t P
—(t — — | — ) sin—( — —— | — |si
T, T o ty Ty Yo ta Ty -

Plot the response for two values of 77 /T, = % and 2.

(b) Derive equations for the deformation response factor R, during (i) the forced vibration
phase, and (ii) the free vibration phase.

(c) Plot Ry for the two phases against t;/7,,. Also plot the shock spectrum.

p
p

o

d Figure P4.21
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4.22

4.23

4.24

4.25

4.26

Derive equations for the deformation u () of an undamped SDF system due to the force p(t)
shown in Fig. P4.22 for each of the following time ranges: t < f;,#] <t < 2t1,2t; <t < 31y,
and r > 31y.

Po

no2n 3n Figure P4.22

An SDF system is subjected to the force shown in Fig. P4.22. Determine the maximum
response during free vibration of the system and the time instant the first peak occurs.

To determine the maximum response of an undamped SDF system to the force of Fig. P4.22
for a particular value of 7;/T,, where t; = 3¢, you would need to identify the time range
among the four time ranges mentioned in Problem 4.22 during which the overall maximum
response would occur, and then find the value of that maximum. Such analyses would need to
be repeated for many values of 7;/7;, to determine the complete shock spectrum. Obviously,
this is time consuming but necessary if one wishes to determine the complete shock spectrum.
However, the spectrum for small values of #; /T, can be determined by treating the force as an
impulse. Determine the shock spectrum by this approach and plot it. What is the error in this
approximate result for 74 /T, = }T?

(a) Determine the response of an undamped SDF system to the force shown in Fig. P4.25 for
each of the following time intervals: (i) 0 < ¢ < 14/2, (ii) t7/2 < t < t4, and (iii) ¢ > #4.
Assume that #(0) = u(0) = 0.

(b) Determine the maximum response u, during free vibration of the system. Plot the defor-
mation response factor Ry = u,/(us), as a function of 74 /7, over the range 0 < t;/T,, < 4.
(¢) If t; < Ty, can the maximum response be determined by treating the applied force as a
pure impulse? State reasons for your answer.

p

ta

ty12

~Po

Figure P4.25

The 80-ft-high water tank of Examples 2.6 and 2.7 is subjected to the force p(z) shown in
Fig. E4.2a. The maximum response of the structure with the tank full (weight = 100.03 kips)
was determined in Example 4.2.

(a) If the tank is empty (weight = 20.03 kips), calculate the maximum base shear and bending
moment at the base of the tower supporting the tank.

(b) By comparing these results with those for the full tank (Example 4.2), comment on the
effect of mass on the response to impulsive forces. Explain the reason.
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Numerical Evaluation of
Dynamic Response

PREVIEW

Analytical solution of the equation of motion for a single-degree-of-freedom system is
usually not possible if the excitation—applied force p(¢) or ground acceleration ii, (1)—
varies arbitrarily with time or if the system is nonlinear. Such problems can be tackled
by numerical time-stepping methods for integration of differential equations. A vast body
of literature, including major chapters of several books, exists about these methods for
solving various types of differential equations that arise in the broad subject area of applied
mechanics. The literature includes the mathematical development of these methods; their
accuracy, convergence, and stability properties; and computer implementation.

Only a brief presentation of a very few methods that are especially useful in dynamic
response analysis of SDF systems is included here, however. This presentation is intended
to provide only the basic concepts underlying these methods and to provide a few computa-
tional algorithms. Although these would suffice for many practical problems and research
applications, the reader should recognize that a wealth of knowledge exists on this subject.

5.1 TIME-STEPPING METHODS

For an inelastic system the equation of motion to be solved numerically is
mi + cu + fs(u) = p(t) or —miig (1) (5.1.1)
subject to the initial conditions
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The system is assumed to have linear viscous damping, but other forms of damping, in-
cluding nonlinear damping, could be considered, as will become obvious later. However,
this is rarely done for lack of information on damping, especially at large amplitudes of
motion. The applied force p(¢) is given by a set of discrete values p; = p(#;),i =0to N
(Fig. 5.1.1). The time interval

At; =ty — 1 (5.1.2)

is usually taken to be constant, although this is not necessary. The response is determined at
the discrete time instants #;, denoted as time i; the displacement, velocity, and acceleration
of the SDF system are u;, u;, and ii;, respectively. These values, assumed to be known,
satisfy Eq. (5.1.1) at time i:

mii; + cu; + (fs)i = pi (5.1.3)

where (fs); is the resisting force at time i; (fs); = ku; for a linearly elastic system but
would depend on the prior history of displacement and on the velocity at time i if the
system were nonlinear. The numerical procedures to be presented will enable us to deter-
mine the response quantities #,4, i#;4+1, and i; | at time i + 1 that satisfy Eq. (5.1.1) at

Pixr1

p P2
o 1 /\
> !

fh o h i i \/

A

iy Uivl
u
Uo -1

Ih I b f iy —~—~—e S

Figure 5.1.1 Notation for time-stepping methods.
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time i + 1:

miijt1 + cttiv1 + (fs)it1 = Pit1 (5.1.4)
When applied successively withi = 0, 1,2, 3, ..., the time-stepping procedure gives the
desired response at all time instants i = 1, 2, 3, .... The known initial conditions, uy =

u(0) and 1y = u(0), provide the information necessary to start the procedure.

Stepping from time i to i 4 1 is usually not an exact procedure. Many approximate
procedures are possible that are implemented numerically. The three important require-
ments for a numerical procedure are (1) convergence—as the time step decreases, the nu-
merical solution should approach the exact solution, (2) stability—the numerical solution
should be stable in the presence of numerical round-off errors, and (3) accuracy—the nu-
merical procedure should provide results that are close enough to the exact solution. These
important issues are discussed briefly in this book; comprehensive treatments are available
in books emphasizing numerical solution of differential equations.

Three types of time-stepping procedures are presented in this chapter: (1) methods
based on interpolation of the excitation function, (2) methods based on finite difference
expressions of velocity and acceleration, and (3) methods based on assumed variation of
acceleration. Only one method is presented in each of the first two categories and two from
the third group.

5.2 METHODS BASED ON INTERPOLATION OF EXCITATION

A highly efficient numerical procedure can be developed for linear systems by interpolating
the excitation over each time interval and developing the exact solution using the methods
of Chapter 4. If the time intervals are short, linear interpolation is satisfactory. Figure 5.2.1
shows that over the time interval #; <t < t;,,, the excitation function is given by

() = p; + 2P (52.1a)
T) = p; —T Z.la
)4 P Al

Figure 5.2.1 Notation for linearly
-1 interpolated excitation.
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where

Ap; = piy1 — Di (5.2.1b)

and the time variable t varies from O to Az;. For algebraic simplicity, we first consider
systems without damping; later, the procedure will be extended to include damping. The
equation to be solved is

mii + ku = p; + %r (5.2.2)

Aty

subject to initial conditions u#(0) = u; and ©(0) = u;. The response u(t) over the time
interval 0 < t < Ag; is the sum of three parts: (1) free vibration due to initial displacement
u; and velocity #; at T = 0, (2) response to step force p; with zero initial conditions, and
(3) response to ramp force (Ap;/At;)t with zero initial conditions. Adapting the available
solutions for these three cases from Sections 2.1, 4.3, and 4.4, respectively, gives

u; . Di Api [ T sinw, T
T) = u; CoSw,T + — sinw, T + — (1 — cosw, T — | — - 5.2.3a
u(t) =u w,T + ) +k( w,T) + (Ati U)nAti> ( )

wy k
and differentiating u(7) leads to
i(r) : Api 1

. Ui pi .
= —u; Sinw, T + — Cosw, T + — sinw, T + —
wy, wy k k w, At;

(1 —cosw,T) (5.2.3b)

Evaluating these equations at T = At; gives the displacement u;,; and velocity u;,; at
timei + 1:

l;tA
uis1 = uj cos(w, At;) + — sin(w, At;)
n
Di Ap;
+ —[1 — cos(w, At;)] + —
. [ (w, AL)] o AL

[wp At; — sin(w, At;)] (5.2.4a)

Uit . Ui
= —u; sin(w, At;) + — cos(w, At;)
Wy Wy
+ P inew, Ary + 2P [1 — cos(w, AL)] (5.2.4b)
k k w, At

These equations can be rewritten after substituting Eq. (5.2.1b) as recurrence formulas:
uir1 = Au; + B + Cp; + Dpiq (5.2.5a)
bl,'+1 = A,M,‘ + B/ﬂi + C/pi + D/pH_l (525b)

Repeating the derivation above for under-critically damped systems (i.e., { < 1)
shows that Eqs. (5.2.5) also apply to damped systems with the expressions for the coeffi-
cients A, B, ..., D’ given in Table 5.2.1. They depend on the system parameters w,, k,
and ¢, and on the time interval At = At;.

Since the recurrence formulas are derived from exact solution of the equation of
motion, the only restriction on the size of the time step At is that it permit a close approxi-
mation to the excitation function and that it provide response results at closely spaced time
intervals so that the response peaks are not missed. This numerical procedure is especially
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TABLE 5.2.1 COEFFICIENTS IN RECURRENCE FORMULAS (¢ < 1)

A = e o (;2 sinwp At + coswp AZ)
1-¢

wp

1] 2 _ 1 —2¢2 ¢ . 2¢
C=- Gan AL — sinwp At — | 1 coswp At
k{a)nAt—’_e wp At /1—§2 e +w,,At @b

1 20 _ 202 -1 | 2¢
D=-|1- Gon A 22— At At
k [ wn At te < wp Ar P + wn AL 0 PP

w,
A= —e bt L ginwp At
1-1¢2

B = ¢ f@n A (cos wp At — ;2 sinwp At)
1—-¢

1 1 1
C'=-{—— ettt On + 3 sinwp At + — coswp At
k At \/]_;2 At\/]_§2 At

D'= ﬁ |:1 — e Con Al (% sinwp At 4+ coswp At>:|
1-¢

1
B = e §@n A (— sinwp At)

useful when the excitation is defined at closely spaced time intervals—as for earthquake
ground acceleration—so that the linear interpolation is essentially perfect. If the time step
At is constant, the coefficients A, B, ..., D’ need to be computed only once.

The exact solution of the equation of motion required in this numerical procedure is
feasible only for linear systems. It is conveniently developed for SDF systems, as shown
above, but would be impractical for MDF systems unless their response is obtained by the
superposition of modal responses (Chapters 12 and 13).

Example 5.1

An SDF system has the following properties: m = 0.2533 kip-sec’/in., k = 10 kips/in.,
n = 1 sec (w, = 6.283 rad/sec), and { = 0.05. Determine the response u(#) of this system

to p(t) defined by the half-cycle sine pulse force shown in Fig. E5.1 by (a) using piecewise

linear interpolation of p(r) with Ar = 0.1 sec, and (b) evaluating the theoretical solution.

Solution
1. Initial calculations

et A = 09691 wp =wpy/1 -2 =6275
sinwp At = 0.5871 coswp At = 0.8095



170 Numerical Evaluation of Dynamic Response

p, kips )
10 10 sin (mtz / 0.6)
10 7 8.66 o= 8.66
Piecewise linear
s interpolation

) > 1, 8€eC

0.6 Figure E5.1

Substituting these in Table 5.2.1 gives
A =0.8129 B =0.09067 C =0.01236 D =0.006352

A'=-3.5795 B’ =0.7559 C’' =0.1709 D' =0.1871

Chap. 5

2. Apply the recurrence equations (5.2.5). The resulting computations are summarized

in Tables E5.1a and ES.1b.

TABLE E5.1a NUMERICAL SOLUTION USING LINEAR INTERPOLATION OF EXCITATION

ti Di Cpi Dpit1 Bii; i Au; Uj Theoretical u;
0.0  0.0000 0.0000 0.0318 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 5.0000 0.0618 0.0550 0.0848 0.9354 0.0258 0.0318 0.0328
0.2  8.6602 0.1070 0.0635 0.2782 3.0679 0.1849 0.2274 0.2332
0.3 10.0000 0.1236 0.0550 0.4403 4.8558 0.5150 0.6336 0.6487
04  8.6603 0.1070 0.0318 0.4290 47318 0.9218 1.1339 1.1605
0.5 5.0000 0.0618 0.0000 0.1753 1.9336 1.2109 1.4896 1.5241
0.6  0.0000 0.0000 0.0000 —0.2735 —3.0159 1.1771 1.4480 1.4814
0.7  0.0000 0.0000 0.0000 —0.6767 —7.4631 0.7346 0.9037 0.9245
0.8  0.0000 0.0000 0.0000 —0.8048 —8.8765 0.0471 0.0579 0.0593
0.9  0.0000 0.0000 0.0000 -0.6272 —-69177 -0.6160 —0.7577 —0.7751
1.0 0.0000 —2.5171 —1.2432 —1.2718

3. Compute the theoretical response. Equation (3.2.5)—valid for + < 0.6 sec,

Eq. (2.2.4) modified appropriately—valid for # > 0.6 sec, and the derivatives of these two

equations are evaluated for each #;; the results are given in Tables ES.1a and ES.

1b.

4. Check the accuracy of the numerical results. The numerical solution based on
piecewise linear interpolation of the excitation agrees reasonably well with the theoretical
solution. The discrepancy arises because the half-cycle sine curve has been replaced by the
series of straight lines shown in Fig. ES.1. With a smaller A¢ the piecewise linear approxima-
tion would be closer to the half-cycle sine curve, and the numerical solution would be more

accurate.
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TABLE E5.1b NUMERICAL SOLUTION USING LINEAR INTERPOLATION OF EXCITATION

ti Di C' pi D' piyi Alu; Ui B'u; u; Theoretical u;
0.0 0.0000 0.0000 0.9354 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 5.0000 0.8544 1.6201 —0.1137 0.0318 0.7071 0.9354 0.9567
0.2 8.6602 14799 1.8707 —0.8140 0.2274 2.3192 3.0679 3.1383
0.3 10.0000 1.7088 1.6201 —2.2679 0.6336 3.6708 4.8558 4.9674
0.4 8.6603 1.4799 0.9354 —4.0588 1.1339 3.5771 47318 4.8408
0.5 5.0000 0.8544 0.0000 —5.3320 1.4896 1.4617 1.9336 1.9783
0.6 0.0000 0.0000 0.0000 —5.1832 1.4480 —2.2799 —3.0159 —3.0848
0.7 0.0000 0.0000 0.0000 —3.2347 0.9037 —5.6418 —7.4631 —7.6346
0.8 0.0000 0.0000 0.0000 —0.2074 0.0579 —6.7103 —8.8765 —9.0808
0.9 0.0000 0.0000 0.0000 2.7124  —0.7577 —5.2295 —-6.9177 —7.0771
1.0 0.0000 —1.2432 —2.5171 —2.5754

5.3 CENTRAL DIFFERENCE METHOD

This method is based on a finite difference approximation of the time derivatives of dis-
placement (i.e., velocity and acceleration). Taking constant time steps, At; = At, the
central difference expressions for velocity and acceleration at time i are

Uil — Ui Lo Wil = 2u; +uiy

T Ar = (A1)2

(5.3.1)

Substituting these approximate expressions for velocity and acceleration into Eq. (5.1.3),
specialized for linearly elastic systems, gives

Wipr —2u; +ui g Wit] — U

—1
ku; = p; 532
(AD)? oA T KM=P (5.3.2)

In this equation u; and u;_; are assumed known (from implementation of the pro-
cedure for the preceding time steps). Transferring these known quantities to the right side

leads to
m n c m c k 2m (5.3.3)
—— — |U; =pDi— | — — |Ui—1 — — —= |U; .
An? T aa: M TP T Az T aar | (A1)
or
kuis1 = p; (5.3.4)
where
g M g © (5.3.5)
T (AD? T 2At -
and

b= pi — | — i ko2, 53.6
Pi = Pi — w—muhl— —@’/h (5.3.6)
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172 Numerical Evaluation of Dynamic Response Chap. 5

TABLE 5.3.1 CENTRAL DIFFERENCE METHOD

1.0 Initial calculations
_po — cug — kug

1.1 i
m
. (AP
1.2 u_y =ug— At ug+ ug.
13 h=— 4"
’ T (AD?  2ArT
14 a=2"2_ <
(AD?  2Ar1
2
15 b=k— ——.
(Ar)?
2.0 Calculations for time step i
2.1 pi=pi —aui_ — bu;.
Pi
2.2 Uiyl = —.
’ k
2.3 If required: 1; = M; ii; = Uil — 2U;i + Uiz

2At
3.0 Repetition for the next time step

(An)?

Replace i by i + 1 and repeat steps 2.1, 2.2, and 2.3 for the next time step.

T If the excitation is ground acceleration iig(t), according to Eq. (1.7.6), replace p; by
—miig; in Table 5.3.1. The computed u;, u;, and ii; give response values relative to the
ground. If needed, the total velocity and acceleration can be computed readily: u; =
u; +ﬂgi and uf =ii; + I;ig[.

The unknown ;4 is then given by

pi
68w (5.3.7)
+1 3

The solution ;4 at time i + 1 is determined from the equilibrium condition, Eq. (5.1.3),
at time ¢ without using the equilibrium condition, Eq. (5.1.4), at time i 4 1. Such methods
are called explicit methods.

Observe in Eq. (5.3.6) that known displacements u; and u;_; are used to compute
u;+1. Thus ug and u_; are required to determine u; the specified initial displacement u
is known. To determine u_;, we specialize Eq. (5.3.1) for i = 0 to obtain

. Uy —u_| .. uy — 2uo +u_y
= — = 538
= oA - (A1)? =
Solving for u; from the first equation and substituting in the second gives
S——( )
u_y = ug — At(ug) + uo (5.3.9)

2
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The initial displacement u and initial velocity i are given, and the equation of motion at
time 0 (o = 0),
miig + cig + kug = po

provides the acceleration at time 0:

i —k
iig = Po ~ Clto = Kito (5.3.10)

m
Table 5.3.1 summarizes the above-described procedure as it might be implemented on the
computer.
The central difference method will “blow up,” giving meaningless results, in the
presence of numerical round-off if the time step chosen is not short enough. The specific

requirement for stability is
At 1
— < — (5.3.11)
T, T

This is never a constraint for SDF systems because a much smaller time step should be
chosen to obtain results that are accurate. Typically, Az/T, < 0.1 to define the response
adequately, and in most earthquake response analyses even a shorter time step, typically
At = 0.01 to 0.02 sec, is chosen to define the ground acceleration i, (¢) accurately.

Example 5.2
Solve Example 5.1 by the central difference method using At = 0.1 sec.
Solution

1.0 Initial calculations
m = 0.2533 k=10 c=0.1592

ug =0 uy =0

po — cip — kug

11 i = PO CMO T IO
mn 2
At
1.2 u_; =ug — (At)ug + (A1) g = 0.
h=— 4 =2613
T(An?  2Aar T T
14a=—"1__° _o453
(AD? 2A1
2
15 b=k — 2 — _40.66.
(An)?

2.0 Calculations for each time step

2.1 p; = pi —aui_i — bu; = pi — 24.53u;_1 + 40.66u;.

Di Di
22w =2 = P
L N TR E

3.0 Computational steps 2.1 and 2.2 are repeated fori = 0, 1,2, 3, ... leading to Table E5.2,
wherein the theoretical result (from Table ES.1a) is also included.
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174 Numerical Evaluation of Dynamic Response Chap. 5

TABLE E5.2 NUMERICAL SOLUTION BY CENTRAL DIFFERENCE METHOD

Di Uj+]
ti Di Uj_1 Uj [Eq. (2.1)] [Eq. (2.2)] Theoretical ;4
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0328
0.1 5.0000 0.0000 0.0000 5.0000 0.1914 0.2332
0.2 8.6602 0.0000 0.1914 16.4419 0.6293 0.6487
0.3 10.0000 0.1914 0.6293 30.8934 1.1825 1.1605
0.4 8.6603 0.6293 1.1825 41.3001 1.5808 1.5241
0.5 5.0000 1.1825 1.5808 40.2649 1.5412 1.4814
0.6 0.0000 1.5808 1.5412 23.8809 0.9141 0.9245
0.7 0.0000 1.5412 0.9141 —0.6456  —0.0247 0.0593
0.8 0.0000 09141 —0.0247 —-23.4309 —0.8968 —0.7751
0.9 0.0000 —0.0247 —0.8968 —35.8598 —1.3726 —1.2718
1.0 0.0000 —0.8968 —1.3726 —33.8058 —1.2940 —1.2674

5.4 NEWMARK’S METHOD
5.4.1 Basic Procedure

In 1959, N. M. Newmark developed a family of time-stepping methods based on the fol-
lowing equations:

w1 =u; +[(1—y) At]ii; + (y At)iijqq (5.4.1a)
wip1 = u; + (A + [(0.5 — ,3)(At)2] i + [,B(Af)z] Uit (5.4.1b)

The parameters § and y define the variation of acceleration over a time step and determine
the stability and accuracy characteristics of the method. Typical selection for y is %, and
% < B < }1 is satisfactory from all points of view, including that of accuracy. These
two equations, combined with the equilibrium equation (5.1.4) at the end of the time step,
provide the basis for computing w1, t;1, and ;4 at time i + 1 from the known u;,
u;, and i; at time i. Iteration is required to implement these computations because the
unknown i; | appears in the right side of Eq. (5.4.1).

For linear systems it is possible to modify Newmark’s original formulation, however,
to permit solution of Egs. (5.4.1) and (5.1.4) without iteration. Before describing this
modification, we demonstrate that two special cases of Newmark’s method are the well-
known constant average acceleration and linear acceleration methods.

5.4.2 Special Cases

For these two methods, Table 5.4.1 summarizes the development of the relationship be-
tween responses u; 11, t;+1, and i, at time i 4+ 1 to the corresponding quantities at time
i. Equation (5.4.2) describes the assumptions that the variation of acceleration over a
time step is constant, equal to the average acceleration, or varies linearly. Integration
of ii(t) gives Eq. (5.4.3) for the variation u#(t) of velocity over the time step in which
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Sec. 5.4 Newmark’s Method 175

TABLE 5.4.1 AVERAGE ACCELERATION AND LINEAR ACCELERATION METHODS

Constant Average Acceleration Linear Acceleration
ii ii
A A
';‘.i+l ';‘.i+l
U; U;
> 1 > 1
tl ti+1 tl ti+1
> T — T
<A—>{ <T>{

i(r) = z(ui+1 + i) i(t) = ii; + E(“Hl — i) (5.4.2)

. LT . . L 2 .

w(r) =i + o (ligy + i) 0(T) = ity + il T+ S G — i) (5.4.3)

. . At . . . At .

Uit] =ui + 7(”141 + i) Uit] =ui + 7(ui+1 + ;) (5.4.4)
. 2 . . R S A .

M(T):”i+uif+j(ui+l + i) u(r) :ui+”if+ui7+@(’4i+l — ;) (5.4.5)
. (an? . . . S (1. 1.

ujy) =u;j +u; At + (tjg1 + i) uir1 = u; +u; At + (Atr) 614,‘.,.1 + Sui (5.4.6)

T = At is substituted to obtain Eq. (5.4.4) for the velocity i, at time i 4+ 1. Integration
of u(t) gives Eq. (5.4.5) for the variation u(7) of displacement over the time step in which
T = At is substituted to obtain Eq. (5.4.6) for the displacement ;| at time i + 1. Compar-
ing Egs. (5.4.4) and (5.4.6) with Eq. (5.4.1) demonstrates that Newmark’s equations with
y = % and 8 = le are the same as those derived assuming constant average acceleration,
and those with y = 1 and 8 = é correspond to the assumption of linear variation of

2
acceleration.
5.4.3 Linear Systems

For linear systems, it is possible to modify Newmark’s original formulation, to permit solu-
tion of Egs. (5.4.1) and (5.1.4) without iteration. Specialized for linear systems, Eq. (5.1.4)
becomes

mid; 1 + ctiy1 + ki1 = piyi (5.4.7)

From Eq. (5.4.1b), ii;,1 can be expressed in terms of u;;:

o an U mmmen s U om0 eaa) o
Uiv1 = W(ul-H u;) ﬂAlul <2/3 1) Ui (5.4.8)
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Substituting Eq. (5.4.8) into Eq. (5.4.1a) gives

i = ﬁ(u,-+1 —u) + <1 - %) iy + At (1 = %) i (5.4.9)

Next, Egs. (5.4.8) and (5.4.9) are substituted into the governing equation (5.4.7) at time
i + 1. This substitution gives

kuiy1 = pisi (5.4.10)
where
Pkt Lot — (5.4.11)
BAt  B(A1)?
and

. 1 % 1 y .
b = s+ g + e+ [+ (5 = 1)
1 Y .
+|:(ﬁ—l>m+At (ﬁ_1> c] U; (5.4.12)

With k and pi+1 known from the system properties m, k, and ¢, algorithm parameters y
and B, and the state of the system at time i defined by u;, u;, and ii;, the displacement at
time i + 1 is computed from

i, p’gl (5.4.13)

Once u;y; is known, the velocity u;y; and acceleration i;; can be computed from
Egs. (5.4.9) and (5.4.8), respectively.
The acceleration can also be obtained from the equation of motion at time i + 1:

i+1 — Clliy1 — ku;
o, @ W) GRS (5.4.14)
m

rather than by Eq. (5.4.8). Equation (5.4.14) is needed to obtain i, to start the time-
stepping computations [see Eq. (5.3.10)].

In Newmark’s method, the solution at time i 4 1 is determined from Eq. (5.4.7), the
equilibrium condition at time i + 1. Such methods are called implicit methods. Although
the resisting force is an implicit function of the unknown u;, it was easy to calculate for
linear systems.

Table 5.4.2 summarizes the time-stepping solution using Newmark’s method as it
might be implemented on the computer.
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Sec. 5.4 Newmark’s Method 177

TABLE 5.4.2 NEWMARK’S METHOD: LINEAR SYSTEMS

Special cases
(1) Constant average acceleration method (y = %, B = }1)
(2) Linear acceleration method (y = %, B = %)

1.0 Initial calculations
po — cuo — kug

1.1 g =
m
1.2 Select At.
13 LY Lo (21 d
3 aqq=—m+—c, ap=—m - — ¢; an
"o T par” T par B

1 Y
a3=——-1)m+At|=——-1])c.
28 28
14 k=k+a.
2.0 Calculations for each time step, i =0, 1,2, ...
2.1 piy1 = piv1 +aru; +axi; + a3 ii;.
Pit1
k

23 iy = ﬁ(um —u)+ <1 - %) i + At (1 - %) ;.

22 ujy =

1 1 1
24 iy = —— Wiy —uj) — ——u; — | — — 1) i;.
Uit+] ﬁ(At)2(ul+l u;) ﬂAtu <2ﬂ )uz
3.0 Repetition for the next time step. Replace i by i + 1 and implement steps 2.1 to 2.4 for the
next time step.

TIf the excitation is ground acceleration iig (¢), according to Eq. (1.7.6), replace p; by —miig; in Table 5.4.2.
The computed u;, u;, and ii; give response values relative to the ground. If needed, the total velocity and
acceleration can be computed readily: uf =u; + g and uf =i + lig.

Newmark’s method is stable if

At 1 1
At _ (5.4.15)
T, w2y =28
For y = 1 and g = 1 this condition becomes
At
— < 00 (5.4.16a)

This implies that the constant average acceleration method is stable for any A¢, no matter
how large; however, it is accurate only if Af is small enough, as discussed at the end of
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178 Numerical Evaluation of Dynamic Response Chap. 5

Section 5.3. For y = % and 8 =
method is stable if

%, Eq. (5.4.15) indicates that the linear acceleration

At
7 <0551 (5.4.16b)

n

However, as in the case of the central difference method, this condition has little signifi-
cance in the analysis of SDF systems because a much shorter time step than 0.5517,, must
be used to obtain an accurate representation of the excitation and response.

Example 5.3

Solve Example 5.1 by the constant average acceleration method using Az = 0.1 sec.

Solution

1.0 Initial calculations

m = 0.2533 k=10 c=0.1592

uop=0 1o =0 po=0
—clio — k

11 %:w:o‘

m
1.2 Ar =0.1.
1.3 —m + 2 104.5 4 + 10.29 d
. = —cC = D = — = 275 an

ap (At)zm Atc a Atm c

ay = m = 0.2533.
14 k=k+a =1145.
2.0 Calculations for each time step,i =0,1,2, ...
2.1 piv1 = piy1 taru; +ayu; +azii; = pip1 + 104.5u; +10.291%; + 0.2533 ii;.

Dit1 _ Pit1

22 uig1 = 7 1145

. 2 .
23 iy = E(MH_I —uj) — Uj.

.. 4 4 . ..
24 iy = W(”H—l —uj) — E”i —Uj.

3.0 Repetition for the next time step. Steps 2.1 to 2.4 are repeated for successive time steps
and are summarized in Table E5.3, where the theoretical result (from Table E5.1a) is
also included.

Example 5.4

Solve Example 5.1 by the linear acceleration method using Ar = 0.1 sec.

Solution

1.0 Initial calculations

m=02533 k=10 c¢=0.1592
o =0 p=0 pp=0
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TABLE E5.3 NUMERICAL SOLUTION BY CONSTANT AVERAGE

Newmark’s Method

ACCELERATION METHOD

Di ii; i; u; Theoretical
ti pi (Step2.1)  (Step 2.4) (Step 2.3) (Step 2.2) u;
0.0  0.0000 0.0000 0.0000 0.0000 0.0000
0.1 5.0000 5.0000 17.4666 0.8733 0.0437 0.0328
0.2 8.6603 26.6355 23.1801 2.9057 0.2326 0.2332
0.3 10.0000 70.0837 12.3719 4.6833 0.6121 0.6487
04 8.6603 1239535 —11.5175 4.7260 1.0825 1.1605
0.5 5.0000 163.8469 —38.1611 2.2421 1.4309 1.5241
0.6 0.0000 1629448 —54.6722 —2.3996 1.4230 1.4814
0.7 0.0000 110.1710 —33.6997 —6.8182 0.9622 0.9245
0.8 0.0000 21.8458 —2.1211  —8.6092 0.1908 0.0593
0.9 0.0000 —69.1988 28.4423  —7.2932  —0.6043 —0.7751
1.0 0.0000 —131.0066 473701 —=3.5026 —1.1441 —1.2718
11 iig = Po—cto—kuo _
m
1.2 At =0.1.
1.3 3. 6.8; 6 5.52; d
. al_mm—{—zc_lS .8; az_A—tm—}—Zc_l.Z, an

2.0

3.0

At
ay =2m + 76 = 0.5146.

14 k =k +a; = 166.8.

Calculations for each time step, i =0,1,2, ...

179

21 piv1 = piy1 taru; +apu; +azii; = pipy + 156.8u; + 15.524; + 0.5146ii;.

piv1 _ Dit1
22 ujy ] = — = ——.
HHLE T T 66,8
. 3 . At
2.3 iy = E(”H—l —ui) —2u; — - i
. 6 6 . .
24 iijy = W(MH_I —uj) — Eui — 2ii;.

Repetition for the next time step. Steps 2.1 to 2.4 are repeated for successive time steps
and are summarized in Table E5.4, where the theoretical result (from Table E5.1a) is

also included.

Observe that the numerical results obtained by the linear acceleration method are
closer to the theoretical solution (Table E5.4), hence more accurate, than those from the
constant average acceleration method (Table E5.3).
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TABLE E5.4 NUMERICAL SOLUTION BY LINEAR ACCELERATION METHOD

Di il u; u; Theoretical
ti Di (Step 2.1) (Step 2.4) (Step 2.3) (Step 2.2) u;
0.0 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 5.0000 5.0000 17.9904 0.8995 0.0300 0.0328

0.2  8.6603 36.5748 23.6566 2.9819 0.2193 0.2332
0.3 10.0000 102.8221 12.1372 4.7716 0.6166 0.6487
04  8.6603 185.5991 —12.7305 4.7419 1.1130 1.1605
0.5  5.0000 246.4956  —39.9425 2.1082 1.4782 1.5241
0.6 0.0000 243.8733 —56.0447 —2.6911 1.4625 1.4814
0.7 0.0000 158.6538 —33.0689 —7.1468 0.9514 0.9245
0.8 0.0000 21.2311 0.4892  —8.7758 0.1273 0.0593
0.9 0.0000 —115.9590 31.9491 —7.1539 —0.6954 —0.7751
1.0 0.0000 —203.5678 50.1114  —=3.0508  —1.2208 —1.2718

5.5 STABILITY AND COMPUTATIONAL ERROR
5.5.1 Stability

Numerical procedures that lead to bounded solutions if the time step is shorter than some
stability limit are called conditionally stable procedures. Procedures that lead to bounded
solutions regardless of the time-step length are called unconditionally stable procedures.
The average acceleration method is unconditionally stable. The linear acceleration method
is stable if At/T, < 0.551, and the central difference method is stable if Af/T, < 1/m.
Obviously, the latter two methods are conditionally stable.

The stability criteria are not restrictive (i.e., they do not dictate the choice of time
step) in the analysis of SDF systems because Az/T, must be considerably smaller than
the stability limit (say, 0.1 or less) to ensure adequate accuracy in the numerical results.
Stability of the numerical method is important, however, in the analysis of MDF systems,
where it is often necessary to use unconditionally stable methods (Chapter 16).

5.5.2 Computational Error

Error is inherent in any numerical solution of the equation of motion. We do not discuss
error analysis from a mathematical point of view. Rather, we examine two important char-
acteristics of numerical solutions to develop a feel for the nature of the errors, and then
mention a simple, useful way of managing error.

Consider the free vibration problem

mii +ku =0 u@) =1 and u(0)=0



Sec. 5.5 Stability and Computational Error 181

Average
acceleration

Figure 5.5.1 Free vibration solution by four numerical methods (Az/7,, = 0.1) and the theoretical
solution.

for which the theoretical solution is

u(t) = cosw,t (5.5.1)

This problem is solved by four numerical methods: central difference method, av-
erage acceleration method, linear acceleration method, and Wilson’s method. The last of
these methods is available elsewhere; see the references at the end of the chapter. The
numerical results obtained using At = 0.17,, are compared with the theoretical solution
in Fig. 5.5.1. This comparison shows that some numerical methods may predict that the
displacement amplitude decays with time, although the system is undamped, and that the
natural period is elongated or shortened.

Figure 5.5.2 shows the amplitude decay AD and period elongation PE in the four
numerical methods as a function of Az/T,; AD and PE are defined in part (b) of the fig-
ure. The mathematical analyses that led to these data are not presented, however. Three
of the methods predict no decay of displacement amplitude. Wilson’s method contains
decay of amplitude, however, implying that this method introduces numerical damping
in the system; the equivalent viscous damping ratio ¢ is shown in part (a) of the fig-
ure. Observe the rapid increase in the period error in the central difference method near
At/T, = 1/m, the stability limit for the method. The central difference method intro-
duces the largest period error. In this sense it is the least accurate of the methods con-
sidered. For Atr/T, less than its stability limit, the linear acceleration method gives the
least period elongation. This property, combined with no amplitude decay, makes this
method the most suitable method (of the methods presented) for SDF systems. However,
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Figure 5.5.2 (a) Amplitude decay versus At/T,; (b) definition of AD and PE; (c) period elongation
versus At/T,.

we shall arrive at a different conclusion for MDF systems because of stability requirements
(Chapter 16).

The choice of time step also depends on the time variation of the dynamic excita-
tion, in addition to the natural vibration period of the system. Figure 5.5.2 suggests that
At = 0.17, would give reasonably accurate results. The time step should also be short
enough to keep the distortion of the excitation function to a minimum. A very fine time
step is necessary to describe numerically the highly irregular earthquake ground acceler-
ation recorded during earthquakes; typically, Ar = 0.02 sec and the time step chosen for
computing structural response should not be longer.

One useful, although unsophisticated technique for selecting the time step is to solve
the problem with a time step that seems reasonable, then repeat the solution with a slightly
smaller time step and compare the results, continuing the process until two successive
solutions are close enough.
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The preceding discussion of stability and accuracy applies strictly to linear systems.
The reader should consult other references for how these issues affect nonlinear response
analysis.

5.6 NONLINEAR SYSTEMS: CENTRAL DIFFERENCE METHOD

The dynamic response of a system beyond its linearly elastic range is generally not amen-
able to analytical solution even if the time variation of the excitation is described by a
simple function. Numerical methods are therefore essential in the analysis of nonlinear
systems. The central difference method can easily be adapted for solving the nonlinear
equation of motion, Eq. (5.1.3), at time i. Substituting Eqgs. (5.3.1), the central difference
approximation for velocity and acceleration, gives Eq. (5.3.2) with ku; replaced by ( fs);,
which can be rewritten to obtain the following expression for response at time i + 1:

kuiv1 = pi (5.6.1)
where
= — S (5.62)
T (AD? T 2At -
and
b s O o P28 (5.6.3)
i =Pi | T T A | Yi- oUW — i -0.
Pi=Pi= a2 ~ 24 | T Ar)2 S

Comparing these equations with those for linear systems, it is seen that the only difference
is in the definition for p;. With this modification Table 5.3.1 also applies to nonlinear
systems.

The resisting force (fs); appears explicitly, as it depends only on the response at
time 7, not on the unknown response at time i + 1. Thus it is easily calculated, making the
central difference method perhaps the simplest procedure for nonlinear systems.

5.7 NONLINEAR SYSTEMS: NEWMARK’S METHOD

In this section, Newmark’s method described earlier for linear systems is extended to non-
linear systems. Recall that this method determines the solution at time i + 1 from the
equilibrium condition at time i + 1, i.e., Eq. (5.1.4) for nonlinear systems. Because the
resisting force (f;);+1 1s an implicit nonlinear function of the unknown u;,, iteration is
required in this method. This requirement is typical of implicit methods. It is instructive
first to develop the Newton—Raphson method of iteration for static analysis of a nonlinear
SDF system.


user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight


184 Numerical Evaluation of Dynamic Response Chap. 5
5.7.1 Newton-Raphson lteration

Dropping the inertia and damping terms in the equation of motion [Eq. (5.1.1)] gives the
nonlinear equation to be solved in a static problem:

fsw)=p (5.7.1)

The task is to determine the deformation u due to a given external force p, where the
nonlinear force—deformation relation fs(u) is defined for the system to be analyzed.

Suppose that after j cycles of iteration, u'/) is an estimate of the unknown displace-
ment and we are interested in developing an iterative procedure that provides an improved
estimate #+D. For this purpose, expanding the resisting force S(j 1 in Taylor series
about the known estimate u/) gives

A S Af . A 1 9%f A N2
G+ _ ey . 9JS G+D _ () - S G+D _ () cee (572
s s F ou |, (u ! ) * 2 u? |0 (u ! ) * (>7.2)

If u is close to the solution, the change in u, Au'? = uU*) — 4 will be small and
the second- and higher-order terms can be neglected, leading to the linearized equation

Y~ (PP AP = p (5.7.3)
or

kP AuD = p— £ = RD (5.7.4)
where k(Tj ) = 8—{5 is the tangent stiffness at u/). Solving the linearized equation
(5.7.4) gives Au'/ a;;(é) an improved estimate of the displacement:

wUD = D 4 Ay (5.7.5)

The iterative procedure is described next with reference to Fig. 5.7.1. Associated
with u) is the force f{, which is not equal to the applied force p, and a residual force
is defined: RY) = p — S(j ). The additional displacement due to this residual force is
determined from Eq. (5.7.4), leading to "+, This new estimate of the solution is used
to find a new value of the residual force RU*D = p — f S(‘i 1 The additional displacement

AuY*D due to this residual force is determined by solving
kD AyUt+D = RUHD (5.7.6)
This additional displacement is used to find a new value of the displacement:
wUtD = U+ L AL, U+D (5.7.7)
and a new value of the residual force RU*?) and the process is continued until convergence

is achieved. This iterative process is known as the Newton—Raphson method.

Convergence rate. It can be proven that near the end of the iteration process
the Newton—Raphson algorithm converges with quadratic rate to the exact solution u, i.e.,

- 2 . L
| u—ub +')| <c !u —ub )| , where ¢ is a constant that depends on the second derivative
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Figure 5.7.1 Newton—Raphson iteration: (a) applied and resisting forces; (b) residual force.

of the resisting force or the change in tangent stiffness. This result implies that near the
solution the error in the (j + 1)th iterate (equal to the difference between u and uV+") is
less than the square of the error in the previous iterate u‘/).

Convergence criteria. After each iteration the solution is checked and the iter-

ative process is terminated when some measure of the error in the solution is less than a
specified tolerance. Typically, one or more of the following convergence (or acceptance)
criteria are enforced:

1. Residual force is less than a tolerance:

|RV| < er (5.7.8a)

Conventional values for the tolerance ¢ range from 1073 to 1078.

. Change in displacement is less than a tolerance:

|AauP| < e, (5.7.8b)

Conventional values for the tolerance &, range from 1072 to 1078,

. Incremental work done by the residual force acting through the change in displace-

ment is less than a tolerance:
HAuPRY| <, (5.7.8¢)

Tolerance &,, must be at or near the computer (machine) tolerance because the left
side is a product of small quantities.

Modified Newton—Raphson iteration. To avoid computation of the tangent

stiffness for each iteration, the initial stiffness at the beginning of a time step may be used
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Figure 5.7.2 Modified Newton—Raphson iteration: (a) applied and resisting forces; (b) residual
force.

as the constant stiffness for all iterations within the time step. This modified Newton—
Raphson iteration is illustrated in Fig. 5.7.2, where it can be seen that convergence is now
slower. At each iteration the residual force R/ is now larger, as seen by comparing Figs.
5.7.1 and 5.7.2, and more iterations will be required to achieve convergence.

5.7.2 Newmark’s Method

We have now developed Newton—Raphson iteration to solve a nonlinear equilibrium equa-
tion [e.g., Eq. (5.7.1)] that governs the static problem. In dynamic analysis the goal is to
determine response quantities u;41, #;+ and i; 4 at time i + 1 that satisfy Eq. (5.1.4),
which can be written as

(fs)i+1 = Pisi (5.7.9)

where

(fs)is1 = miiiyr + citizs + (fs)ita (5.7.10)

By including the inertia and damping forces in defining the “resisting force” fs, the dy-
namic analysis equation (5.7.9) is of the same form as the static analysis equation (5.7.1).

Thus, we can adapt the Taylor series expansion of Eq. (5.7.2) to Eq. (5.7.9), interpret
( ﬁ)i+1 as a function of u;, and drop the second- and higher-order terms to obtain an
equation analogous to Eq. (5.7.3):

A G a iy o OFf ,
(fs)gf:l) = (fs)§Q1 + BM—SAM(’) = pit1 (5.7.11)
i1
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where
Au =4It _ D (5.7.12)
Differentiating Eq. (5.7.10) at the known displacement ufjr)l gives
3 fs dii dui 3 fs
= ~|— C
ouiyq ujyy uiyr Oy

where the derivatives in inertia and damping terms on the right side can be determined
from Eqgs. (5.4.8) and (5.4.9), respectively, which were derived from Newmark’s equa-
tion (5.4.1):

o 1 u vy
v B(A1)? duivi  PAT
Putting together the preceding two equations and recalling the definition of tangent stiff-
ness (Section 5.7.1) gives @
NG, 3 fs NG, Y 1
kD = 2SS gy Y 5.7.13
)iy = 5. = Gl + e+ gom (5.7.13)
With the preceding definition of (IQT)EQ 1» Eq. (5.7.11) can be written as
]2 () A () @ ean. @ NG @- I’é(j) 5.7.14
( T)i+1 u-" = pi+i (fS)i_H = N (5.7.14)

Substituting Eqs. (5.4.8) and (5.4.9) in Eq. (5.7.10) and then combining it with the right
side of Eq. (5.7.14) leads to the following expression for the residual force:

50 j 1 4 ~ 1 Y -
Ri(i)1 =/ Pi+1'= (fS),(i)l - |:ﬂ(At)2m + MC} (M,(i)l - Mt) == I:Mm == (E = 1) C] u;

1 Y .
+|:<ﬁ—l>m+At (ﬁ—l)c} % (5.7.15)

Note that the linearized equation (5.7.14) for the jth iteration in dynamic analysis is similar
in form to the corresponding equation (5.7.4) in static analysis. However, there is an im-
portant difference in the two equations in that damping and inertia terms are now included
in both the tangent stiffness kr (Eq. 5.7.13) and the residual force R (Eq. 5.7.15). The first,
fourth, and fifth terms on the right side of Eq. (5.7.15) do not change from one iteration
to the next. The second and third terms need to be updated with every new estimate of
displacement u ffr) | during iteration.

Equation (5.7.14) provides the basis for the Newton—Raphson iteration method, sum-
marized in step 3.0 of Table 5.7.1. Once u,,; is determined, the rest of the computation
proceeds as for linear systems; in particular, i; | and u; are determined from Egs. (5.4.8)
and (5.4.9), respectively. Table 5.7.1 summarizes Newmark’s algorithm as it might be im-
plemented on the computer.
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TABLE 5.7.1 NEWMARK’'S METHOD: NONLINEAR SYSTEMS

Special cases

(1) Average acceleration method (y = 5,
(2) Linear acceleration method (y = /3

1.0

3. B

Initial calculations
1.1 State determination: ( fs)g and (k7)g.

po — cip — (fs)o

1.2 g =
m
1.3 Select At.
1 4 Y
ay ﬂ(At)2m+ ﬂAtC ap ﬁAtm+ (/3 )C an

a3=<$—l)m+At<2yﬁ 1)0.

2.0 Calculations for each time instant, i =0, 1,2, ...
2.1 Titialize j = 1, ul, = ur, (f)\)) = (fs)i. and k) = Ghr)i.
22 piy1 = piv1 +aru; +ayiy + a3 ii;.
3.0 For each iteration, j =1,2,3 ...
3.0 RD) = pii — (fo, —aru?),.
3.2 Check convergence; If the acceptance criteria are not met, implement steps 3.3 to
3.7; otherwise, skip these steps and go to step 4.0.
33 (ki) = k) +ar.
34 AuD = RY, + (k).
3.5 u?ﬁ:]) = "‘z(jr)l + AulD,
3.6 State determination: ( fs)gﬂl) and (kT)fﬂ:l).
Replace j by j + 1 and repeat steps 3.1 to 3.6; denote final value as u; 1.
4.0 Calculations for velocity and acceleration
41 = ﬁ(u,ﬂ —up) + <1 - %) i + At (1 - ﬁ) ii;.
42 i = ;(MH-I —uj) — Llli - <L - 1) ;.
B(AN? AL 28
5.0 Repetition for next time step. Replace i by i + 1 and implement steps 2.0 to 4.0 for the
next time step.
Example 5.5

An SDF system has the same properties as in Example 5.1, except that the restoring force—
deformation relation is elastoplastic with yield deformation u,
fy = 7.5 kips (Fig. E5.5). Determine the response u(t) of this system (starting from rest)
to the half-cycle sine pulse force in Fig. ES.1 using the constant average acceleration method
with At = 0.1 sec and Newton—Raphson iteration.

= 0.75 in. and yield force
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Figure E5.5
Solution

1.0 Initial calculations
m = 0.2533 k=10 c=0.1592
uyp =20 uy =20 po=0

1.1 State determination: (fs)o = 0 and (k7)g = k = 10.
po — ctio — (fs)o _

1.2 i = 0.
m
1.3 At =0.1.
2 4
14 a = ——m+ —c=104.5040; ap) = —m + ¢ =10.2912; and
(A1)? At At

ay = m = 0.2533.

As an example, the calculations of steps 2.0, 3.0 and 4.0 in Table 5.7.1, are implemented as
follows for the time step that begins at 0.3 sec and ends at 0.4 sec.

2.0 Calculations fori =3

2.1 Initialize j = 1

D) = ui = 0.6121, (f), = (fs)i = 6.1206, and (k) = (kp); = 10.

2.2 piy1 = pi+1 + 104.5u; + 10.294; + 0.2533ii; = 123.9535.
3.0 First iteration, j = 1

31 RY, = pi1 — (o)), — 104.5u),

= 123.9535 — 6.1206 — 63.9630 = 53.8698.
3.2 Check of convergence: Because ‘Iél(_l‘_)l ’ = 53.8698 exceeds e = 1073 , chosen for

this example, implement steps 3.3 to 3.7.
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33 (kp)Y, = k)| + a1 = 10+ 104.5040 = 114.5040.

34 Au® = RY = k)Y = 53.8698 + 114.5040 = 0.4705.

35 u) =ul)| + Au®D = 0.6121 + 0.4705 = 1.0825.

3.6 State determination: ( fs)g ) 4 and (kT)E_H
(9P, = (fs)i +k@®) — up) = 6.1206 + (10 x 0.4705) = 10.8253.

Because (f5)\7) > fy. (f9)2) = fy = 7.5 and (k7)) = 0.

3.0 Second iteration, j =2
31 RY, = pip1 — (f9)3, — 10450,
= 123.9535 — 7.5 — 113.1282 = 3.3253.

3.2 Check of convergence: Because ’R( ) ‘ = 3.3253 exceeds eg, implement steps 3.3
to 3.7.
33 (kT)(+1 = (kT)f | + a1 =0+ 104.5040 = 104.5040.

34 Au® = R®)) + (k7| = 33253 + 104.5040 = 0.0318.

i+1 =

35 ul) =u?| + Au® = 1.0825 +0.0318 = 1.1143.
3.6 State determination: ( fs)@l and (kr)g_)1
(D) = (fo)i + k@, —up) = 61206 + (10 x 0.5023) = 11.1434.

Because (f5)\}) > fy. (f9)3) = fy = 7.5 and (k7)) = 0.
3.0 Third iteration, j =3
53 ~ 3 3
31 R, = pip1 — (f9)F), — 10454,
= 123.9535 — 7.5 — 116.4535 = 0.

3.2 Check of convergence: Because

R( ) ‘ = 0 is less than eg, skip steps 3.3 to 3.7;
setug = ul) = 1.1143.
4.0 Calculations for velocity and acceleration

2 2
41 u;jpy = E(M,‘+1 —uj) —u; = 01 (1.1143 — 0.6121) — 4.683 = 5.3624.

4.2 iy = (i1 —ui) — A—tﬂi — il

4
(an?
(0 1)2(1 1143 — 0.6121) — —4 6833 — 12.3719 = 1.2103.

These calculations for the time step 0.3 to 0.4 sec are summarized in Table ES.5.

5.0 Repetition for next time step. After replacing i by i + 1, steps 2.0 to 4.0 are repeated
for successive time steps and are summarized in Table ES.5.
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TABLE E5.5 NUMERICAL SOLUTION BY CONSTANT AVERAGE ACCELERATION METHOD WITH
NEWTON-RAPHSON ITERATION

Ié,- or (kT); or (I%T),- or u; or

P . " . . i+l i+1 . .
i RY e e au wTY (gD i
0.0 0.0000 10 0.0000 0.0000  0.0000

0.1  5.0000 5.0000 10 114.504  0.0437 0.0437  0.4367  0.8733 17.4666
0.2 8.6603  21.6355 10 114504  0.1889 0.2326 ~ 2.3262  2.9057  23.1801
0.3 10.0000  43.4481 10 114.504  0.3794 0.6121 6.1206  4.6833 12.3719
04 8.6603  53.8698 10 114.504  0.4705 1.0825  7.5000

3.3253 0 104.504  0.0318 1.1143  7.5000  5.3624 1.2103
0.5 5.0000  55.9918 0 104.504  0.5071 1.6214  7.5000  4.7792 —12.8735
0.6 0.0000  38.4230 0 104.504  0.3677 1.9891 7.5000 25742 —31.2270
0.7 0.0000  11.0816 0 104.504  0.1060 2.0951 7.5000 —0.4534 —29.3242
0.8 0.0000 —19.5936 0 104.504 —0.1875 1.9076  5.6251

1.8749 10 114504  0.0164 1.9240  5.7888 —2.9690 —20.9876
0.9 0.0000 —41.6593 10 114.504 —0.3638 1.5602  2.1506 —4.3075 —5.7830
1.0 0.0000 —47.9448 10 114504 —0.4187 1.1415 -2.0366 —4.0668 10.5962

During the next three time steps (after 0.4 sec), the system is on the yielding branch
ab. In other words, the stiffness k; = 0 remains constant, and no iteration is necessary.
Between 0.6 and 0.7 sec the velocity changes sign from positive to negative, implying that
the deformation begins to decrease, the system begins to unload along the branch bc, and
the stiffness k; = 10. However, we have ignored this change during the time step, implying
that the system stays on the branch ab and no iteration is necessary.

The computation for the time step starting at 0.6 sec can be made more accurate by
finding, by a process of iteration, the time instant at which # = 0. Then the calculations
can be carried out with stiffness k; = 0 over the first part of the time step and with k; = 10
over the second part of the time step. Alternatively, a smaller time step can be used for
improved accuracy.

Note that the solution over a time step is not exact because equilibrium is satisfied
only at the beginning and end of the time step, not at all time instants within the time step.
This implies that the energy balance equation (Chapter 7) is violated. The discrepancy in
energy balance, usually calculated at the end of the excitation, is an indication of the error
in the numerical solution.

Example 5.6

Repeat Example 5.5 using modified Newton—Raphson iteration within each time step of At =
0.1 sec.

Solution The procedure of Table 5.7.1 is modified to use the initial stiffness at the beginning
of a time step as the constant stiffness for all iterations within the time step. The computations
in steps 1.0 and 2.0 are identical to those presented in Example 5.5, but step 3.0 is now differ-
ent. To illustrate these differences, step 3.0 in the modified Table 5.7.1 is implemented for the
time step that begins at 0.3 sec and ends at 0.4 sec.
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First iteration, j = 1
5 (1 N 1 1
31 RY, = pi1 — (o)), — 104.5ul))
= 123.9535 — 6.1206 — 63.9630 = 53.8698.

3.2 Check of convergence: Because
33t03.7.

Iéfrl‘ = 53.8698 exceeds g, implement steps

3.3 (kr),,, = (kr),,, +a1 = 10+ 104.5040 = 114.5040.
34 Au® = R, = (kr),, | = 53.8698 + 114.5040 = 0.4705.

35 u =ul)| + AuD = 0.6121 + 0.4705 = 1.0825.

2

3.6 State determination: (fs);

(o)) = (fo)i +k ( ) - i) = 6.1206 + (10 x 0.4705) = 10.8253.

2 2
Because (f5)\7) > fy. (fs)) = fy =1.5.
Second iteration j = 2
5 (2 A 2 2
31 RZ) = pir — (f9)7) — 104.5u7,
= 123.9535 — 7.5 — 113.1282 = 3.3253.

3.2 Check of convergence: Because R(z) ‘ = 3.3253 exceeds e, implement steps 3.3

to 3.7.
33 (kr), ., = 114.5040.

34 Au® = R®), + (kp),,, = 3.3253 + 114.5040 = 0.0290.

35 ul), = ul| + Au® =1.0825 +0.0290 = 1.1116.

3.6 State determination: ( fS)z |
()2, = (o) + k@] = up) = 61206 + (10 x 0.5000) = 11.1157.
Because (fS)l+1 > fy, (fg)lH fy=15.

Third iteration, j = 3
53 ~ 3 3

31 R, = pip1 — (f9)5), —104.5u"),

=123.9535 - 7.5 — 116.1631 = 0.2904.
3.2 Check of convergence: Because

to 3.7.
33 (kr), ., = 114.5040.

R(%) ‘ = 0.2904 exceeds eg, implement steps 3.3

34 Au® = R+ (kr),,, = 0.2904 = 114.5040 = 0.0025.
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35 u® =y

i+1

i

3.6 State determination: ( fg)gr)l

(fs)

“4)
i+1

Nonlinear Systems: Newmark’s Method

Y+ Au® = 11116 +0.0025 = 1.1141.
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= (fs)i + k@'Y, —ui) = 61206 + (10 x 0.5020) = 11.1410.

Because (f5)\7) > fy. (f)i)) = fy =1.5.

These calculations and those for additional iterations during the time step 0.3 to 0.4 sec are
shown in Table E5.6.

TABLE E5.6 NUMERICAL SOLUTION BY CONSTANT AVERAGE ACCELERATION METHOD WITH
MODIFIED NEWTON-RAPHSON ITERATION

R; or (kr); or (kr)i or u; or '
ti pi Iéf ) (kT),w (IQT)EI) Aut) MEJH) (fs)fﬁ—l) i 7
0.0  0.0000 10 0.0000 0.0000 0.0000
0.1  5.0000 5.0000 10 114.504 0.0437 0.0437 0.4367 0.8733 17.4666
0.2 8.6603 21.6355 10 114.504 0.1889 0.2326 2.3262 2.9057 23.1801
0.3 10.0000 43.4481 10 114.504 0.3794 0.6121 6.1206 4.6833 12.3719
0.4 8.6603 53.8698 10 114.504 0.4705 1.0825 7.5000
3.3253 0.02904 1.1116 7.5000
0.2904 2.536E-3 1.1141 7.5000
2.536E-2 2.215E-4 1.1143 7.5000
2.215E-3 1.934E-5 1.1143 7.5000 5.3623 1.2095
0.5 5.0000 55.9912 0 104.504 0.5071 1.6214 7.5000 47791 —12.8734
0.6  0.0000 38.4222 0 104.504 0.3677 1.9891 7.5000 2.5741 —=31.2270
0.7  0.0000 11.0810 0 104.504 0.1060 2.0951 7.5000 —0.4534 —29.3242
0.8 0.0000 —19.5936 0 104.504 —0.1875 1.9076 5.6250
1.8750 1.794E-2 1.9256 5.8044
—0.1794 —1.717E-3 1.9238 5.7873
1.717E-2 1.643E-4 1.9240 5.7889
1.643E-3 —1.572E-5 1.9240 5.7888 —2.9690 —20.9879
0.9 0.0000 —41.6600 10 114.504 —0.3638 1.5602 2.1505 —4.3076 —5.7824
1.0 0.0000 —47.9451 10 114504 —-0.4187 1.1414 —2.0367 —4.0668 10.5969

The original Newton—Raphson iteration converges more rapidly than the modified
Newton—Raphson iteration, as is apparent by comparing Tables E5.5 and E5.6 that summarize
results from the two methods, respectively. Observe the following: (1) The results of the first
iteration are identical in the two cases because both use the initial tangent stiffness. Conse-

quently, the resisting force ( fs)fi)l and the residual force ﬁf

2)
+

| are identical. (2) By using

the current tangent stiffness (kr)g_)1 and the associated value of (Igr)fi)l from Eq. (5.7.13) in
the second iteration, the original Newton—Raphson method leads to a smaller residual force
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Iél(i)l = 0 (Example 5.5) compared to éz(i)l = 0.2904 from the modified Newton—Raphson
method (Example 5.6). (3) Because at each iteration the residual force I@l(f | is now smaller,
convergence is achieved in fewer iterations; for this time step of this example, two iterations
are required in the original Newton—Raphson method (Example 5.5) compared to five itera-

tions in the modified Newton—Raphson method (Example 5.6).
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5.1

PROBLEMS

In Section 5.2 we developed recurrence formulas for numerical solution of the equation of
motion of a linear SDF system based on linear interpolation of the forcing function p(¢) over
each time step. Develop a similar procedure using a piecewise-constant representation of the
forcing function wherein the value of the force in the interval #; to ¢, is a constant equal to
pi (Fig. P5.1). Show that the recurrence formulas for the response of an undamped system
are
. sin(w, AL) - pi

ui+1 = u; cos(w, At;) + u,'a)— + 7[1 — cos(w, Atj)]

n

g1 = Ui[—p sin(@n Af)] + i cos(wn Ati) + %a}n sin(wn Af)

Specialize the recurrence formulas for the following definition of the piecewise-constant force:
pi = (pi + pi+1)/2. Write the recurrence formulas in the following form:

uj+1 = Au; + Bu; + Cp; + Dpj+1
tip1 = A'uj + B'ii; + C'pj + D' pi 4

with equations for the constants A, B, C, ..., D’.
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*5.2

*5.3

*5.4

*5.5

*5.6

*5.7

*5.8

*5.9

*5.10

*5.11

P
A

i liv1 ) Figure P5.1

Solve Example 5.1 using the piecewise-constant approximation of the forcing function; ne-
glect damping in the SDF system.

Solve the problem in Example 5.1 by the central difference method, implemented by a com-
puter program in a language of your choice, using Az = 0.1 sec. Note that this problem was
solved as Example 5.2 and that the results were presented in Table ES.2.

Repeat Problem 5.3 using At = 0.05 sec. How does the time step affect the accuracy of the
solution?

An SDF system has the same mass and stiffness as in Example 5.1, but the damping ratio
is { = 20%. Determine the response of this system to the excitation of Example 5.1 by
the central difference method using Az = 0.05 sec. Plot the response as a function of time,
compare with the solution of Problem 5.3, and comment on how damping affects the peak
response.

Solve the problem in Example 5.1 by the central difference method using At = % sec. Carry
out your solution to 2 sec, and comment on what happens to the solution and why.

Solve the problem in Example 5.1 by the constant average acceleration method, implemented
by a computer program in a language of your choice, using Ar = 0.1 sec. Note that this
problem was solved as Example 5.3, and the results are presented in Table ES.3. Compare
these results with those of Example 5.2, and comment on the relative accuracy of the constant
average acceleration and central difference methods.

Repeat Problem 5.7 using At = 0.05 sec. How does the time step affect the accuracy of the
solution?

Solve the problem in Example 5.1 by the constant average acceleration method using Az = %
sec. Carry out the solution to 2 sec, and comment on the accuracy and stability of the solution.

Solve the problem of Example 5.1 by the linear acceleration method, implemented by a com-
puter program in a language of your choice, using Az = 0.1 sec. Note that this problem
was solved as Example 5.4 and that the results are presented in Table E5.4. Compare with
the solution of Example 5.3, and comment on the relative accuracy of the constant average
acceleration and linear acceleration methods.

Repeat Problem 5.10 using At = 0.05 sec. How does the time step affect the accuracy of the
solution?

*Denotes that a computer is necessary to solve this problem.
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*5.12

*5.13

*5.14

*5.15

*5.16
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Solve the problem of Example 5.5 by the central difference method, implemented by a com-
puter program in a language of your choice, using Ar = 0.05 sec.

Solve Example 5.5 by the constant average acceleration method with Newton—Raphson
iteration, implemented by a computer program in a language of your choice. Note that this
problem was solved as Example 5.5 and the results were presented in Table ES.5.

Solve Example 5.6 by the constant average acceleration method with modified Newton—
Raphson iteration, implemented by a computer program in a language of your choice. Note
that this problem was solved as Example 5.6 and the results were presented in Table ES.6.
Solve Example 5.5 by the linear acceleration method with Newton—Raphson iteration using
At = 0.1 sec.

Solve Example 5.5 by the linear acceleration method with modified Newton—Raphson itera-
tion using At = 0.1 sec.

*Denotes that a computer is necessary to solve this problem.
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Earthquake Response of
Linear Systems

PREVIEW

One of the most important applications of the theory of structural dynamics is in analyzing
the response of structures to ground shaking caused by an earthquake. In this chapter we
study the earthquake response of linear SDF systems to earthquake motions. By definition,
linear systems are elastic systems, and we shall also refer to them as linearly elastic sys-
tems to emphasize both properties. Because earthquakes can cause damage to many struc-
tures, we are also interested in the response of yielding or inelastic systems, the subject of
Chapter 7.

The first part of this chapter is concerned with the earthquake response—deforma-
tion, internal element forces, stresses, and so on—of simple structures as a function of time
and how this response depends on the system parameters. Then we introduce the response
spectrum concept, which is central to earthquake engineering, together with procedures to
determine the peak response of systems directly from the response spectrum. This is fol-
lowed by a study of the characteristics of earthquake response spectra, which leads into the
design spectrum for the design of new structures and safety evaluation of existing struc-
tures against future earthquakes. The important distinctions between design and response
spectra are identified and the chapter closes with a discussion of two types of response
spectra that are not used commonly.

6.1 EARTHQUAKE EXCITATION
For engineering purposes the time variation of ground acceleration is the most useful way
of defining the shaking of the ground during an earthquake. The ground acceleration ii, (t)

appears on the right side of the differential equation (1.7.4) governing the response of

197



Memory Card

198 Earthquake Response of Linear Systems Chap. 6

structures to earthquake excitation. Thus, for given ground acceleration the problem to be
solved is defined completely for an SDF system with known mass, stiffness, and damping
properties.

The basic instrument to record three components of ground shaking during earth-
quakes is the strong-motion accelerograph (Fig. 6.1.1), which does not record continu-
ously but is triggered into motion by the first waves of the earthquake to arrive. This is
because even in earthquake-prone regions such as California and Japan, there may not be

Transverse Accelerometer Film Take-up Magazine

\ Batteries

Starter/Trigger Mechanism \

%
N
P!

Light Source Vertical Acceleromeler

(a) Longitudinal Accelerometer

On/Off switch

Data Processor Board
(front board) Memory Board
Analog to Digital & Power
Supply Board
{behind front board)

. GSA-2

pium Backup Battery (Clock)

/ \
Battery Longitudinal Transversal Vertical
Triaxial Force Balance
Accelerometer (b)

Figure 6.1.1 Strong motion accelerographs: (a) SMA-1, an analog-recording instrument with un-
damped natural frequency of 25 Hz and damping 60% of critical; (b) SSA-2, a digital recording
instrument with undamped natural frequency of 50 Hz and damping 70% of critical. (Courtesy of
Kinemetrics, Inc.)
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any strong ground motion from earthquakes to record for months, or even years, at a time.
Consequently, continual recordings of hundreds of such instruments would be a wasteful
exercise. After triggering, the recording continues for some minutes or until the ground
shaking falls again to imperceptible levels. Clearly, the instruments must be regularly
maintained and serviced so that they produce a record when shaking occurs.

The basic element of an accelerograph is a transducer element, which in its sim-
plest form is an SDF mass—spring—damper system (Section 3.7). Therefore, the transducer
element is characterized by its natural frequency f, and viscous damping ratio ¢; typi-
cally, f, = 25 Hz and ¢ = 60% for modern analog accelerographs; and f,, = 50 Hz
and ¢ = 70% in modern digital accelerographs.! These transducer parameters enable the
digital instrument to record, without excessive distortion, acceleration—time functions con-
taining frequencies from very low up to, say, 30 Hz; the analog instrument is accurate over
a narrower frequency range, say, up to 15 Hz.

Ideally, many stations should be instrumented prior to an earthquake to record the
ground motions. However, not knowing when and exactly where earthquakes will occur
and having limited budgets for installation and maintenance of instruments, it is not always
possible to obtain such recordings in the region of strongest shaking. For example, no
strong-motion records were obtained from two earthquakes that caused much destruction:
Killari, Maharashtra, India, September 30, 1993; and Guam, a U.S. territory, August 8,
1993; only one record resulted from the devastating earthquake in Haiti, January 12, 2010.
In contrast, an earthquake in Japan or California, two well-instrumented regions, can be
expected to produce a large number of records. For example, the magnitude 9.0 Tohoku
earthquake on March 11, 2011, near the east coast of Honshu, Japan, produced several
hundred records of strong shaking.

The first strong-motion accelerogram was recorded during the Long Beach earth-
quake of 1933, and as of April 2011, over 3000 records have now been obtained. As might
be expected, most of these records are of small motion and only a fraction of them have
acceleration of 20% g or more. The geographical distribution of these ground motion
records is very uneven. A large majority of them are from California, Japan, and Taiwan;
most of the intense records are from six earthquakes: the San Fernando earthquake of
February 9, 1971, the Loma Prieta earthquake of October 17, 1989, and the Northridge
earthquake of January 17, 1994, in California; the Kobe earthquake of January 16, 1995,
and the Tohoku earthquake of March 11, 2011, in Japan; and the Chi-Chi earthquake of
September 20, 1999 in Taiwan. The peak values of accelerations recorded at many different
locations during the Loma Prieta earthquake are shown in Fig. 6.1.2. These acceleration
values are largest near the epicenter of the earthquake and tend to decrease with distance
from the fault causing the earthquake. However, the accelerations recorded at similar dis-
tances may vary significantly because of several factors, especially local soil conditions.

Figure 6.1.3 shows a collection of representative acceleration—time records of earth-
quake ground motions in the region of strong shaking. One horizontal component is given

It should be noted that most if not all of the digital accelerographs use a force-balance type of transducer,
for which two parameters will not completely define the instrument response, which is that of a higher-order (than
a mass—spring—damper) system.
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October 17, 1989. (Courtesy of R. B. Seed.)



Sec. 6.1 Earthquake Excitation 201

Parkfield 1966

El Centro 1940 - SOOE No.2 - N65E
W,\N-wwv———-—-o Ww
Lytle Creek 1970 - S65E San Francisco 1957

State Building - SO9E

San Fernando 1971
Pacoima Dam - N76 W

Managua 1972 - East

Olympia 1949 - NS6E o 0.5 4
g
g
uﬂ’yp’*—_—-— E; 0.0 -
Stone Canyon 1972 51
Helena 1935 - SOOW 3]
Melendy Ranch - N29W Koyna 1967 - Long < 05 -
-1.0 -

Loma Prieta 1989

Northridge 1994 - .
Sylmar County Hospital Corralitos - CHANT : 90 Deg

Parking Lot - CHAN3 : 360 Deg

Chile 1985, Llolleo - N10E

A NANAANAN NN N\ AN ANNAA

Mexico City, 1985 - SCT SOOE

0 10 20 30 40 50 60 70 80

Time, sec

Figure 6.1.3 Ground motions recorded during several earthquakes. [Based in part on Hudson
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Figure 6.1.4 North—south component of horizontal ground acceleration recorded at the
Imperial Valley Irrigation District substation, El Centro, California, during the Imperial
Valley earthquake of May 18, 1940. The ground velocity and ground displacement were
computed by integrating the ground acceleration.

for each location and earthquake. All have been plotted to the same acceleration and time
scale. The wide and very real variability of amplitude, duration, and general appearance of
different records can be clearly seen. One of these records is enlarged in Fig. 6.1.4. This is
the north—south component of the ground motion recorded at a site in El Centro, Califor-
nia, during the Imperial Valley, California, earthquake of May 18, 1940." At this scale it
becomes apparent that ground acceleration varies with time in a highly irregular manner.
No matter how irregular, the ground motion is presumed to be known and independent of
the structural response. This is equivalent to saying that the foundation soil is rigid, im-
plying no soil-structure interaction. If the structure were founded on very flexible soil, the
motion of the structure and the resulting forces imposed on the underlying soil can modify
the base motion.

The ground acceleration is defined by numerical values at discrete time instants.
These time instants should be closely spaced to describe accurately the highly irregular

1

variation of acceleration with time. Typically, the time interval is chosen to be 155 to 51—0 of

a second, requiring 1500 to 3000 ordinates to describe the ground motion of Fig. 6.1.4.

This ground acceleration is used extensively in this book and, for brevity, will be called El Centro ground
motion, although three components of motion have been recorded at the same site during several earthquakes
after 1940.
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The top curve in Fig. 6.1.4 shows the variation of El Centro ground acceleration
with time. The peak ground acceleration iy, is 0.319g. The second curve is the ground
velocity, obtained by integrating the acceleration—time function. The peak ground veloc-
ity 114, is 13.04 in./sec. Integration of ground velocity provides the ground displace-
ment, presented as the lowest trace. The peak ground displacement u,, is 8.40 in. It
is difficult to determine accurately the ground velocity and displacement because ana-
log accelerographs do not record the initial part—until the accelerograph is triggered—of
the acceleration—time function, and thus the base (zero acceleration) line is unknown.
Digital accelerographs overcome this problem by providing a short memory so that the
onset of ground motion is measured.

In existence are several different versions of the El Centro ground motion. The varia-
tions among them arise from differences in (1) how the original analog trace of acceleration
versus time was digitized into numerical data, and (2) the procedure chosen to introduce
the missing baseline in the record. The version shown in Fig. 6.1.4 is used throughout this
book and is tabulated in Appendix 6.

6.2 EQUATION OF MOTION

Equation (1.7.4) governs the motion of a linear SDF system (Fig. 6.2.1) subjected to ground
acceleration i, (1). Dividing this equation by m gives

i+ 20w, 1t + W u = —iig(f) (6.2.1)

It is clear that for a given iig(¢), the deformation response u(t) of the system depends only
on the natural frequency w, or natural period 7, of the system and its damping ratio, ¢;
writing formally, u = u(¢, T, ¢). Thus any two systems having the same values of 7,
and ¢ will have the same deformation response u(¢) even though one system may be more
massive than the other or one may be stiffer than the other.

Ground acceleration during earthquakes varies irregularly to such an extent (see
Fig. 6.1.4) that analytical solution of the equation of motion must be ruled out. Therefore,
numerical methods are necessary to determine the structural response, and any of the meth-
ods presented in Chapter 5 could be used. The response results presented in this chapter

SN

(®)

k ) )

7 7
= ug

Figure 6.2.1 Single-degree-of-freedom systems.
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were obtained by exact solution of the equation of motion for the ground motion varying
linearly over every time step, At = 0.02 sec (Section 5.2).

6.3 RESPONSE QUANTITIES

Of greatest interest in structural engineering is the deformation of the system, or displace-
ment u(¢) of the mass relative to the moving ground, to which the internal forces are lin-
early related. These are the bending moments and shears in the beams and columns of the
one-story frame of Fig. 6.2.1a or the spring force in the system of Fig. 6.2.1b. Knowing the
total displacement u’(r) of the mass would be useful in providing enough separation be-
tween adjacent buildings to prevent their pounding against each other during an earthquake.
Pounding is the cause of damage to several buildings during almost every earthquake (see
Fig. 6.3.1). Similarly, the total acceleration ii’ (¢) of the mass would be needed if the struc-
ture is supporting sensitive equipment and the motion imparted to the equipment is to be
determined.

The numerical solution of Eq. (6.2.1) can be implemented to provide results for rel-
ative quantities u (), u(t), and ii(¢) as well as total quantities u’ (¢), i’ (¢), and it (¢).

A WL

Figure 6.3.1 Two images of pounding damage to the Sanborns Building (shorter) and
33 Reforma Avenue Building (taller), Mexico City due to Mexico earthquake of July 28,
1957. (From the Steinbrugge Collection, National Information Service for Earthquake
Engineering, University of California, Berkeley.)
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6.4 RESPONSE HISTORY

For a given ground motion i, (¢), the deformation response u(t) of an SDF system depends
only on the natural vibration period of the system and its damping ratio. Figure 6.4.1a
shows the deformation response of three different systems due to El Centro ground accel-
eration. The damping ratio, { = 2%, is the same for the three systems, so that only the dif-
ferences in their natural periods are responsible for the large differences in the deformation
responses. It is seen that the time required for an SDF system to complete a cycle of vibra-
tion when subjected to this earthquake ground motion is very close to the natural period
of the system. (This interesting result, valid for typical ground motions containing a wide
range of frequencies, can be proven using random vibration theory, not included in this
book.) The peak deformation [Eq. (1.11.1)] is also noted in each case. Observe that among
these three systems, the longer the vibration period, the greater the peak deformation. As
will be seen later, this trend is neither perfect nor valid over the entire range of periods.
Figure 6.4.1b shows the deformation response of three systems to the same ground
motion. The vibration period 7,, is the same for the three systems, so that the differences

(a) (b)
T, =0.5sec, {=0.02 Tn=2sec,{=0
10- ) 9.91 in.
o-—\%w»kwmwww-—wmm .
{1 2.67in. 1
-10- i
£ T, =1sec, {=0.02 T, =2sec, {=0.02
< 101 7
= 4
8
b= .
£
% .
= J 7.47 in.
0 T,=2sec, {=0.02 T,=2sec, {=0.05
| | 5.37 in.
01 'ZH:V&VAVAVAVAV&VW‘A
-10- 7.47 in. i
o 1o 20 3 0 10 20 30
Time, sec Time, sec

Figure 6.4.1 Deformation response of SDF systems to El Centro ground motion.
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in their deformation responses are associated with their damping. We observe the expected
trend that systems with more damping respond less than lightly damped systems. Because
the natural period of the three systems is the same, their responses display a similarity in
the time required to complete a vibration cycle and in the times the maxima and minima
occur.

Once the deformation response history u(#) has been evaluated by dynamic analysis
of the structure, the internal forces can be determined by static analysis of the structure
at each time instant. Two methods to implement such analysis were mentioned in Sec-
tion 1.8. Between them, the preferred approach in earthquake engineering is based on the
concept of the equivalent static force fs (Fig. 6.4.2) because it can be related to earthquake
forces specified in building codes; fs was defined in Eq. (1.8.1), which is repeated here for
convenience:

Js(t) = ku(t) (6.4.1)

= f5(1)

=

- V0

\—/Mb(t)

Figure 6.4.2 Equivalent static force.

where k is the lateral stiffness of the frame (Fig. 6.2.1a). Expressing k in terms of the mass
m gives

fs() =ma}u(t) =mA() (6.4.2)
where
A(t) = 0? u(t) (6.4.3)

Observe that the equivalent static force is m times A(t), the pseudo-acceleration, not m
times the total acceleration i’ (¢). This distinction is discussed in Section 6.6.3.

The pseudo-acceleration response A(z) of the system can readily be computed from
the deformation response u(¢). For the three systems with 7, = 0.5, 1, and 2 sec, all having
¢ = 0.02, u(t) is available in Fig. 6.4.1. Multiplying each u(t) by the corresponding w? =
(27 /T,,)? gives the pseudo-acceleration responses for these systems; they are presented in
Fig. 6.4.3, where the peak value is noted for each system.

For the one-story frame the internal forces (e.g., the shears and moments in the
columns and beam, or stress at any location) can be determined at a selected instant of
time by static analysis of the structure subjected to the equivalent static lateral force fs(¢)
at the same time instant (Fig. 6.4.2). Thus a static analysis of the structure would be neces-
sary at each time instant when the responses are desired. In particular, the base shear V (¢)
and the base overturning moment M, () are

Vo(t) = fs(t)  My(t) = hfs(t) (6.4.4a)
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0 10 2'() ' 3'0 Figure 6.4.3 Pseudo-acceleration response
Time, sec of SDF systems to El Centro ground motion.

where £ is the height of the mass above the base. We put Eq. (6.4.2) into these equations

to obtain
Vp(t) = mA(t) My(t) = hVy(t) (6.4.4b)

If the SDF system is viewed as a mass—spring—damper system (Fig. 6.2.1b), the
notion of equivalent static force is not necessary. One can readily visualize that the spring
force is given by Eq. (6.4.1).

6.5 RESPONSE SPECTRUM CONCEPT

G. W. Housner was instrumental in the widespread acceptance of the concept of the earth-
quake response spectrum—initiated by M. A. Biot in 1932—as a practical means of
characterizing ground motions and their effects on structures. Now a central concept in
earthquake engineering, the response spectrum provides a convenient means to summa-
rize the peak response of all possible linear SDF systems to a particular component of
ground motion. It also provides a practical approach to applying the knowledge of struc-
tural dynamics to the design of structures and development of lateral force requirements in
building codes.

A plot of the peak value of a response quantity as a function of the natural vibration
period 7,, of the system, or a related parameter such as circular frequency w, or cyclic
frequency f,, is called the response spectrum for that quantity. Each such plot is for SDF
systems having a fixed damping ratio ¢, and several such plots for different values of ¢ are
included to cover the range of damping values encountered in actual structures. Whether
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the peak response is plotted against f,, or 7, is a matter of personal preference. We have
chosen the latter because engineers prefer to use natural period rather than natural fre-
quency because the period of vibration is a more familiar concept and one that is intuitively
appealing.

A variety of response spectra can be defined depending on the response quantity that
is plotted. Consider the following peak responses:

M{J(Tnv {) = mtaX |u(t1 Tn7 ;)'
(T, §) = max [i(t, T, )|
iig (T, ¢) = max |ii" (¢, T, ©)

The deformation response spectrum is a plot of u, against 7, for fixed ¢. A similar plot
for i, is the relative velocity response spectrum, and for ii!) is the acceleration response
spectrum.

6.6 DEFORMATION, PSEUDO-VELOCITY, AND
PSEUDO-ACCELERATION RESPONSE SPECTRA

In this section the deformation response spectrum and two related spectra, the pseudo-
velocity and pseudo-acceleration response spectra, are discussed. As shown in Section 6.4,
only the deformation u(¢) is needed to compute internal forces. Obviously, then, the de-
formation spectrum provides all the information necessary to compute the peak values of
deformation D = u, and internal forces. The pseudo-velocity and pseudo-acceleration
response spectra are included, however, because they are useful in studying characteristics
of response spectra, constructing design spectra, and relating structural dynamics results
to building codes.

6.6.1 Deformation Response Spectrum

Figure 6.6.1 shows the procedure to determine the deformation response spectrum. The
spectrum is developed for El Centro ground motion, shown in part (a) of this figure. The
time variation of the deformation induced by this ground motion in three SDF systems is
presented in part (b). For each system the peak value of deformation D = u, is determined
from the deformation history. (Usually, the peak occurs during ground shaking; however,
for lightly damped systems with very long periods the peak response may occur during
the free vibration phase after the ground shaking has stopped.) The peak deformations are
D = 2.67 in. for a system with natural period 7,, = 0.5 sec and damping ratio { = 2%;
D = 5.97 in. for a system with 7, = 1 secand { = 2%; and D = 7.47 in. for a system with
T, = 2 sec and ¢ = 2%. The D value so determined for each system provides one point
on the deformation response spectrum; these three values of D are identified in Fig. 6.6.1c.
Repeating such computations for a range of values of 7, while keeping ¢ constant at
2% provides the deformation response spectrum shown in Fig. 6.6.1c. As we shall show
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Figure 6.6.1 (a) Ground acceleration; (b) deformation response of three SDF systems with ¢ = 2%
and 7,, = 0.5, 1, and 2 sec; (c) deformation response spectrum for { = 2%.

later, the complete response spectrum includes such spectrum curves for several values of
damping.

6.6.2 Pseudo-velocity Response Spectrum

Consider a quantity V for an SDF system with natural frequency w, related to its peak
deformation D = u, due to earthquake ground motion:

2
V=w,D= TD (6.6.1)

The quantity V' has units of velocity. It is related to the peak value of strain energy Eg,
stored in the system during the earthquake by the equation

mV?

Eg, = (6.6.2)
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This relationship can be derived from the definition of strain energy and using Eq. (6.6.1)
as follows:

E ku2 kD>  k(V/w,)?*> mV?

YT T T T2 T 2

The right side of Eq. (6.6.2) is the kinetic energy of the structural mass m with velocity
V, called the peak pseudo-velocity. The prefix pseudo is used because V' is not equal to
the peak relative velocity u,, although it has the correct units. We return to this matter in
Section 6.12.

The pseudo-velocity response spectrum is a plot of V as a function of the natural
vibration period 7,,, or natural vibration frequency f;, of the system. For the ground motion
of Fig. 6.6.1a, the peak pseudo-velocity V for a system with natural period 7, can be
determined from Eq. (6.6.1) and the peak deformation D of the same system available
from the response spectrum of Fig. 6.6.1c, which has been reproduced in Fig. 6.6.2a. As
an example, for a system with 7, = 0.5 sec and { = 2%, D = 2.67 in.; from Eq. (6.6.1),
V = (27/0.5)2.67 = 33.7 in./sec. Similarly, for a system with 7,, = 1 sec and the same
¢,V = (2n/1)5.97 = 37.5 in/sec; and for a system with 7, = 2 sec and the same
¢,V = (2rn/2)7.47 = 23.5 in./sec. These three values of peak pseudo-velocity V are
identified in Fig. 6.6.2b. Repeating such computations for a range of values of 7, while
keeping ¢ constant at 2% provides the pseudo-velocity spectrum shown in Fig. 6.6.2b.

6.6.3 Pseudo-acceleration Response Spectrum

Consider a quantity A for an SDF system with natural frequency w, related to its peak
deformation D = u, due to earthquake ground motion:

5 27\ ?

a=wp=(Z\ b (6.6.3)
T,

The quantity A has units of acceleration and is related to the peak value of base shear V},

[or the peak value of the equivalent static force fs,, Eq. (6.4.4a)]:

Vo = fSo =mA (664)

This relationship is simply Eq. (6.4.4b) specialized for the time of peak response with the
peak value of A(¢) denoted by A. The peak base shear can be written in the form

A
Vio = —w (6.6.5)
g

where w is the weight of the structure and g the gravitational acceleration. When written in
this form, A/g may be interpreted as the base shear coefficient or lateral force coefficient.
It is used in building codes to represent the coefficient by which the structural weight is
multiplied to obtain the base shear.

Observe that the base shear is equal to the inertia force associated with the mass
m undergoing acceleration A. This quantity defined by Eq. (6.6.3) is generally different
from the peak acceleration i/, of the system. It is for this reason that we call A the peak
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Figure 6.6.2 Response spectra (¢ = 0.02) for El Centro ground motion: (a) deforma-
tion response spectrum; (b) pseudo-velocity response spectum; (c) pseudo-acceleration
response spectrum.

pseudo-acceleration; the prefix pseudo is used to avoid possible confusion with the true
peak acceleration ii!. We return to this matter in Section 6.12.

The pseudo-acceleration response spectrum is a plot of A as a function of the natural
vibration period 7,,, or natural vibration frequency f;, of the system. For the ground motion
of Fig. 6.6.1a, the peak pseudo-acceleration A for a system with natural period 7, and
damping ratio { can be determined from Eq. (6.6.3), and the peak deformation D of the
system from the spectrum of Fig. 6.6.2a. As an example, for a system with 7, = 0.5 sec
and { = 2%, D = 2.67 in.; from Eq. (6.6.3), A = (271’/0.5)22.67 = 1.09g, where g = 386
in./sec?. Similarly, for a system with 7, = 1 sec and the same ¢, A = (27/1)?5.97 =
0.610g; and for a system with 7,, = 2 sec and the same ¢, A = (27/2)*7.47 = 0.191g.
Note that the same values for A are also available as the peak values of A(f) presented
in Fig. 6.4.3. These three values of peak pseudo-acceleration are identified in Fig. 6.6.2c.



212 Earthquake Response of Linear Systems Chap. 6

Repeating such computations for a range of values of 7, while keeping ¢ constant at 2%
provides the pseudo-acceleration spectrum shown in Fig. 6.6.2c.

6.6.4 Combined D-V-A Spectrum

Each of the deformation, pseudo-velocity, and pseudo-acceleration response spectra for a
given ground motion contains the same information, no more and no less. The three spec-
tra are simply different ways of presenting the same information on structural response.
Knowing one of the spectra, the other two can be obtained by algebraic operations using
Egs. (6.6.1) and (6.6.3).

Why do we need three spectra when each of them contains the same information?
One of the reasons is that each spectrum directly provides a physically meaningful quan-
tity. The deformation spectrum provides the peak deformation of a system. The pseudo-
velocity spectrum is related directly to the peak strain energy stored in the system during
the earthquake; see Eq. (6.6.2). The pseudo-acceleration spectrum is related directly to the
peak value of the equivalent static force and base shear; see Eq. (6.6.4). The second reason
lies in the fact that the shape of the spectrum can be approximated more readily for design
purposes with the aid of all three spectral quantities rather than any one of them alone; see
Sections 6.8 and 6.9. For this purpose a combined plot showing all three of the spectral
quantities is especially useful. This type of plot was developed for earthquake response
spectra, apparently for the first time, by A. S. Veletsos and N. M. Newmark in 1960.
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Figure 6.6.3 Combined D-V-A response spectrum for El Centro ground motion; ¢ = 2%.
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This integrated presentation is possible because the three spectral quantities are in-
terrelated by Eqgs. (6.6.1) and (6.6.3), rewritten as

A T, 2
—=V=w,D or —A=V=—D (6.6.6)
Wy 2n T"

Observe the similarity between these equations relating D, V, and A and Eq. (3.2.21) for
the dynamic response factors Ry, R,, and R, for an SDF system subjected to harmonic
excitation. Equation (3.2.21) permitted presentation of R;, R,, and R,, all together, on
four-way logarithmic paper (Fig. 3.2.8), constructed by the procedure described in Ap-
pendix 3 (Chapter 3). Similarly, the graph paper shown in Fig. A6.1 (Appendix 6) with
four-way logarithmic scales can be constructed to display D, V, and A, all together. The
vertical and horizontal scales for V and 7,, are standard logarithmic scales. The two scales
for D and A sloping at +45° and —45°, respectively, to the 7,-axis are also logarithmic
scales but not identical to the vertical scale; see Appendix 3.

Once this graph paper has been constructed, the three response spectra—deforma-
tion, pseudo-velocity, and pseudo-acceleration—of Fig. 6.6.2 can readily be combined into
a single plot. The pairs of numerical data for V and T, that were plotted in Fig. 6.6.2b on
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Figure 6.6.4 Combined D-V—A response spectrum for El Centro ground motion; ¢ = 0,
2,5, 10, and 20%.
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linear scales are replotted in Fig. 6.6.3 on logarithmic scales. For a given natural period T,,,
the D and A values can be read from the diagonal scales. As an example, for 7,, = 2 sec,
Fig. 6.6.3 gives D = 7.47 in. and A = 0.191g. (Actually, these numbers cannot be read so
accurately from the graph; in this case they were available from Fig. 6.6.2.) The four-way
plot is a compact presentation of the three—deformation, pseudo-velocity, and pseudo-
acceleration—response spectra, for a single plot of this form replaces the three plots of
Fig. 6.6.2.

A response spectrum should cover a wide range of natural vibration periods and sev-
eral damping values so that it provides the peak response of all possible structures. The
period range in Fig. 6.6.3 should be extended because tall buildings and long-span bridges,
among other structures, may have longer vibration periods (Fig. 2.1.2), and several damp-
ing values should be included to cover the practical range of { = 0 to 20%. Figure 6.6.4
shows spectrum curves for ¢ = 0, 2, 5, 10, and 20% over the period range 0.02 to 50 sec.
This, then, is the response spectrum for the north—south component of ground motion
recorded at one location during the Imperial Valley earthquake of May 18, 1940. Because
the lateral force or base shear for an SDF system is related through Eq. (6.6.5) to A/g, we
also plot this normalized pseudo-acceleration spectrum in Fig. 6.6.5. Similarly, because
the peak deformation is given by D, we also plot this deformation response spectrum
in Fig. 6.6.6.

The response spectrum has proven so useful in earthquake engineering that spec-
tra for virtually all ground motions strong enough to be of engineering interest are now

Alg

fsolw

T,, sec

Figure 6.6.5 Normalized pseudo-acceleration, or base shear coefficient, response spec-
trum for El Centro ground motion; ¢ = 0, 2, 5, 10, and 20%.
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computed and published soon after they are recorded. Enough of them have been obtained
to give us a reasonable idea of the kind of motion that is likely to occur in future earth-
quakes, and how response spectra are affected by distance to the causative fault, local soil
conditions, and regional geology.

6.6.5 Construction of Response Spectrum

The response spectrum for a given ground motion component i, () can be developed by
implementation of the following steps:

1. Numerically define the ground acceleration ii4(¢); typically, the ground motion ordi-
nates are defined every 0.02 sec.

2. Select the natural vibration period 7,, and damping ratio ¢ of an SDF system.

3. Compute the deformation response u(¢) of this SDF system due to the ground mo-
tion ii, (1) by any of the numerical methods described in Chapter 5. [In obtaining the
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Figure 6.6.6 Deformation response spectrum for El Centro ground motion; ¢ = 0, 2, 5, 10, and
20%.
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responses shown in Fig. 6.6.1, the exact solution of Eq. (6.2.1) for ground motion
assumed to be piecewise linear over every Ar = 0.02 sec was used; see
Section 5.2.]

4. Determine u,, the peak value of u(r).

. The spectral ordinates are D = u,, V. = 2w/T,)D, and A = 2n/T,)>D.

6. Repeat steps 2 to 5 for a range of 7,, and ¢ values covering all possible systems of
engineering interest.

wn

7. Present the results of steps 2 to 6 graphically to produce three separate spectra like
those in Fig. 6.6.2 or a combined spectrum like the one in Fig. 6.6.4.

Considerable computational effort is required to generate an earthquake response
spectrum. A complete dynamic analysis to determine the time variation (or history) of the
deformation of an SDF system provides the data for one point on the spectrum correspond-
ing to the 7, and ¢ of the system. Each curve in the response spectrum of Fig. 6.6.4 was
produced from such data for 112 values of 7, unevenly spaced over the range 7, = 0.02
to 50 sec.

Example 6.1

Derive equations for and plot deformation, pseudo-velocity, and pseudo-acceleration response
spectra for ground acceleration iy () = 1g,6(t), where 6(¢) is the Dirac delta function and
lig, is the increment in velocity, or the magnitude of the acceleration impulse. Only consider
systems without damping.

Solution
1. Determine the response history. The response of an SDF system to p(t) = §(t — t)
is available in Eq. (4.1.6). Adapting that solution to pef(t) = —miig(t) = —miigyd(t)
2
1
0 | | | |
0 2n 10

Figure E6.1
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gives
u
u(t) = — 22 sinwyt (@)
wWp
The peak value of u(r) is
i
uy = =2 (b)
Wp
2. Determine the spectral values.
i u
D=u,=-22 =87, (©)
wp 2
2
V =w,D =iig, A=a),21D=T—g0 ()
n

Two of these response spectra are plotted in Fig. E6.1.

6.7 PEAK STRUCTURAL RESPONSE FROM THE RESPONSE
SPECTRUM

If the response spectrum for a given ground motion component is available, the peak value
of deformation or of an internal force in any linear SDF system can be determined readily.
This is the case because the computationally intensive dynamic analyses summarized in
Section 6.6.5 have already been completed in generating the response spectrum. Corre-
sponding to the natural vibration period 7, and damping ratio ¢ of the system, the values
of D, V, or A are read from the spectrum, such as Fig. 6.6.6, 6.6.4, or 6.6.5. Now all
response quantities of interest can be expressed in terms of D, V, or A and the mass or
stiffness properties of the system. In particular, the peak deformation of the system is

T, T,\’
Uo=D=—V=[—1] A (6.7.1)
2 2
and the peak value of the equivalent static force fs, is [from Egs. (6.6.4) and (6.6.3)]
fso=kD =mA (6.7.2)

Static analysis of the one-story frame subjected to lateral force fs, (Fig. 6.7.1) provides
the internal forces (e.g., shears and moments in columns and beams). This involves ap-
plication of well-known procedures of static structural analysis, as will be illustrated later

>fSo

=

Figure 6.7.1 Peak value of equivalent
S~—M, bo static force.
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by examples. We emphasize again that no further dynamic analysis is required beyond
that necessary to determine u(¢). In particular, the peak values of shear and overturning
moment at the base of the one-story structure are

Vo = kD =mA Mpo = Vi, (6.7.3)

We note that any one of these response spectra—deformation, pseudo-velocity, or
pseudo-acceleration—is sufficient for computing the peak deformations and forces re-
quired in structural design. For such applications the velocity or acceleration spectra
(defined in Section 6.5) are not required, but for completeness we discuss these spectra
briefly at the end of this chapter.

Example 6.2

A 12-ft-long vertical cantilever, a 4-in.-nominal-diameter standard steel pipe, supports a
5200-1b weight attached at the tip as shown in Fig. E6.2. The properties of the pipe are:
outside diameter, d, = 4.500 in., inside diameter d; = 4.026 in., thickness r = 0.237 in.,
and second moment of cross-sectional area, I = 7.23 in*, elastic modulus £ = 29,000 ksi,
and weight = 10.79 1b/foot length. Determine the peak deformation and bending stress in the
cantilever due to the El Centro ground motion. Assume that { = 2%.

Solution The lateral stiffness of this SDF system is

3EI 3(29 x10%)7.23
L3 (12x12)3

= 0.211 kip/in.
The total weight of the pipe is 10.79 x 12 = 129.5 b, which may be neglected relative to the
lumped weight of 5200 1b. Thus

w 5.20

m=— =35 = 0.01347 kip-sec? /in.

The natural vibration frequency and period of the system are

[ k [ 0.211
Wy =4 — = = 3.958 rad/sec T, = 1.59 sec
m 0.01347

From the response spectrum curve for ¢ = 2% (Fig. E6.2b), for 7, = 1.59 sec, D = 5.0 in.
and A = 0.20g. The peak deformation is

uo, =D =5.0in.
The peak value of the equivalent static force is
A .
fso = —w = 0.20 x 5.2 = 1.04 kips
g

The bending moment diagram is shown in Fig. E6.2d with the maximum moment at the base
= 12.48 kip-ft. Points A and B shown in Fig. E6.2e are the locations of maximum bending
stress:

Mc (1248 x 12)(4.5/2)

1 7.23

= 46.5 ksi

Omax =
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fso = 1.04 kips

5200 1b —
B ©
all a .
' z 12.48 kip-ft

(e) Section a-a

4-in. pipe

(©) (d) Moment

(a)

Q
g
=
Ny
(b)
Figure E6.2
Thus, 0 = +46.5 ksi at A and 0 = —46.5 ksi at B, where + denotes tension. The algebraic
signs of these stresses are irrelevant because the direction of the peak force is not known, as
the pseudo-acceleration spectrum is, by definition, positive.
Example 6.3

The stress computed in Example 6.2 exceeded the allowable stress and the designer decided
to increase the size of the pipe to an 8-in.-nominal standard steel pipe. Its properties are
d, = 8.6251in.,d; =7.981 in.,t = 0.322 in., and I = 72.5 in*. Comment on the advantages

and disadvantages of using the larger pipe.



Earthquake Response of Linear Systems Chap. 6

Solution
~3(29 x 10%)72.5

(12 x 12)3

[ 2.112
wy = = 12.52 rad/sec T, = 0.502 sec
0.01347

From the response spectrum (Fig. E6.2b): D = 2.7 in. and A = 1.1g. Therefore,

= 2.112 kips/in.

U, =D =2.7in.
fso = 1.1 x 5.2 = 5.72 kips

Mypase = 5.72 x 12 = 68.64 kip-ft

68.64 x 12)(8.625/2
Omax = ¢ X72)5( /2 =49.0 ksi

Using the 8-in.-diameter pipe decreases the deformation from 5.0 in. to 2.7 in. However,
contrary to the designer’s objective, the bending stress increases slightly.

This example points out an important difference between the response of structures to
earthquake excitation and to a fixed value of static force. In the latter case, the stress would
decrease, obviously, by increasing the member size. In the case of earthquake excitation,
the increase in pipe diameter shortens the natural vibration period from 1.59 sec to 0.50 sec,
which for this response spectrum has the effect of increasing the equivalent static force f,.
Whether the bending stress decreases or increases by increasing the pipe diameter depends on
the increase in section modulus, //c, and the increase or decrease in fs,, depending on the
response spectrum.

Example 6.4

A small one-story reinforced-concrete building is idealized for purposes of structural analysis
as a massless frame supporting a total dead load of 10 kips at the beam level (Fig. E6.4a).
The frame is 24 ft wide and 12 ft high. Each column and the beam has a 10-in.-square cross
section. Assume that the Young’s modulus of concrete is 3 x 10° ksi and the damping ratio for
the building is estimated as 5%. Determine the peak response of this frame to the El Centro
ground motion. In particular, determine the peak lateral deformation at the beam level and
plot the diagram of bending moments at the instant of peak response.

17.1 kip-ft
10 kips =7.6 ki =
o flo = TOKIBS g ) 17.1
10” sq. ) N
17.1
10” sq. ( (
, 7. 7. 7. /2 28.4 /2 28.4

s 24 d
T T

(@) (b) (©

Figure E6.4 (a) Frame; (b) equivalent static force; (c) bending moment diagram.
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Solution The lateral stiffness of such a frame was calculated in Chapter 1: k = 96E[/7h3,
where E1 is the flexural rigidity of the beam and columns and # is the height of the frame.

For this particular frame,

L 96(3 x 10%)(10%/12)
N 7(12 x 12)3

= 11.48 kips/in.

The natural vibration period is
27 10/386

—2
Jim TV 1148

T, = = 0.30sec

For T, = 0.3 and ¢ = 0.05, we read from the response spectrum of Fig. 6.6.4: D = 0.67 in.
and A = 0.76g. Peak deformation: u, = D = 0.67 in. Equivalent static force: fs, =
(A/g)w = 0.76 x 10 = 7.6 kips. Static analysis of the frame for this lateral force, shown in

Fig. E6.4b, gives the bending moments that are plotted in Fig. E6.4c.

Example 6.5

The frame of Example 6.4 is modified for use in a building to be located on sloping ground
(Fig. E6.5). The beam is now made much stiffer than the columns and can be assumed to be
rigid. The cross sections of the two columns are 10 in. square, as before, but their lengths are
12 ft and 24 ft, respectively. Determine the base shears in the two columns at the instant of

peak response due to the El Centro ground motion. Assume the damping ratio to be 5%.

Solution
1. Compute the natural vibration period.

123 x 109)(10%/12) 123 x 10%)(10%/12)
- (12 x 12)3 (24 x 12)3
=10.05 4+ 1.26 = 11.31 kips/in.

110/386
T, =2n / = 0.30 sec
11.31

2. Compute the shear force at the base of the short and long columns.

u, = D = 0.67 in., A =0.76g

Vihort = Kshorttto = (10.05)0.67 = 6.73 kips
Viong = kiongtto = (1.26)0.67 = 0.84 kip

12/
24

24

o
P

Figure E6.5
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Observe that both columns go through equal deformation. Undergoing equal deformations, the
stiffer column carries a greater force than the flexible column; the lateral force is distributed
to the elements in proportion to their relative stiffnesses. Sometimes this basic principle has,
inadvertently, not been recognized in building design, leading to unanticipated damage of the
stiffer elements.

Example 6.6

For the three-span box-girder bridge of Example 1.3, determine the base shear in each of
the six columns of the two bents due to El Centro ground motion applied in the longitudinal
direction. Assume the damping ratio to be 5%.

Solution The weight of the bridge deck was computed in Example 1.3: w = 6919 kips. The
natural period of longitudinal vibration of the bridge was computed in Example 2.2: T, =
0.573 sec. For T, = 0.573 sec and ¢ = 0.05, we read from the response spectrum of Fig. 6.6.4:
D =2.591in. and A = 0.807g.

All the columns have the same stiffness and they go through equal deformation u, =
D = 2.591 in. Thus, the base shear will be the same in all columns, which can be computed
in one of two ways: The total equivalent static force on the bridge is [from Eq. (6.6.5)]

fso =0.807 x 6919 = 5584 kips

Base shear for one column, Vj, = 5584 + 6 = 931 kips. Alternatively, the base shear in each
column is

2.591
Vi = keotto = 4313 x = 931 kips

6.8 RESPONSE SPECTRUM CHARACTERISTICS

We now study the important properties of earthquake response spectra. Figure 6.8.1 shows
the response spectrum for El Centro ground motion together with iig,, ttg,, and ug,, the
peak values of ground acceleration, ground velocity, and ground displacement, respec-
tively, identified in Fig. 6.1.4. To show more directly the relationship between the response
spectrum and the ground motion parameters, the data of Fig. 6.8.1 have been presented
again in Fig. 6.8.2 using normalized scales: D /ug,, V /itgo, and A/iig,. Figure 6.8.3 shows
one of the spectrum curves of Fig. 6.8.2, the one for 5% damping, together with an ideal-
ized version shown in dashed lines; the latter will provide a basis for constructing smooth
design spectra directly from the peak ground motion parameters (see Section 6.9). Based
on Figs. 6.8.1 to 6.8.3, we first study the properties of the response spectrum over various
ranges of the natural vibration period of the system separated by the period values at a, b,
¢,d,e,and f: T, = 0.035sec, T, = 0.125, 7. = 0.5, T; = 3.0, T, = 10, and Ty = 15 sec.
Subsequently, we identify the effects of damping on spectrum ordinates.

For systems with very short period, say 7, < T, = 0.035 sec, the peak pseudo-
acceleration A approaches ii 4, and D is very small. This trend can be understood based on
physical reasoning. For a fixed mass, a very short-period system is extremely stiff or es-
sentially rigid. Such a system would be expected to undergo very little deformation and its
mass would move rigidly with the ground; its peak acceleration should be approximately
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Figure 6.8.1 Response spectrum (¢ = 0, 2, 5, and 10%) and peak values of ground
acceleration, ground velocity, and ground displacement for El Centro ground motion.

equal to iy, (Fig. 6.8.4d). This expectation is confirmed by Fig. 6.8.4, where the ground
acceleration is presented in part (a), the total acceleration i’ (¢) of a system with 7, = 0.02
sec and ¢ = 2% in part (b), and the pseudo-acceleration A(#) for the same system in part
(c). Observe that i’ (t) and ii, () are almost identical functions and i, =~ ii,,. Further-
more, for lightly damped systems i’ () >~ —A(¢) and i/, >~ A (Section 6.12.2); therefore,
A X ig,.

For systems with a very long period, say 7, > Ty = 15 sec, D for all damping
values approaches ug, and A is very small; thus the forces in the structure, which are
related to mA, would be very small. This trend can again be explained by relying on
physical reasoning. For a fixed mass, a very-long-period system is extremely flexible. The
mass would be expected to remain essentially stationary while the ground below moves
(Fig. 6.8.5¢). Thus i’ (1) >~ 0, implying that A(¢) =~ 0 (see Section 6.12.2); and u(r) =~
—ug(t), implying that D =~ ug,. This expectation is confirmed by Fig. 6.8.5, where the
deformation response u () of a system with 7,, = 30 sec and { = 2% to the El Centro
ground motion is compared with the ground displacement u,(t). Observe that the peak
values for u, and ug, are close and the time variation of u(¢) is similar to that of —u, (),
but for rotation of the baseline. The discrepancy between the two arises, in part, from the
loss of the initial portion of the recorded ground motion prior to triggering of the recording
accelerograph.
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Figure 6.8.2 Response spectrum for El Centro ground motion plotted with normalized
scales Aliigy, Vlitgy, and Dlugy; & = 0,2, 5, and 10%.

For short-period systems with 7, between 7, = 0.035 sec and 7, = 0.50 sec, A
exceeds iigy,, with the amplification depending on 7, and ¢. Over a portion of this period
range, T, = 0.125 sec to T, = 0.5 sec, A may be idealized as constant at a value equal to
iig, amplified by a factor depending on ¢.

For long-period systems with T, between T;; = 3 sec and Ty = 15 sec, D generally
exceeds u,4,, with the amplification depending on T, and ¢. Over a portion of this period
range, T; = 3.0 sec to 7, = 10 sec, D may be idealized as constant at a value equal to i,
amplified by a factor depending on ¢.

For intermediate-period systems with 7, between T, = 0.5 sec and T; = 3.0 sec, V
exceeds u4,. Over this period range, V may be idealized as constant at a value equal to
lig,, amplified by a factor depending on ¢.

Based on these observations, it is logical to divide the spectrum into three period
ranges (Fig. 6.8.3). The long-period region to the right of point d, 7,, > Ty, is called
the displacement-sensitive region because structural response is related most directly to
ground displacement. The short-period region to the left of point ¢, 7, < T, is called the
acceleration-sensitive region because structural response is most directly related to ground
acceleration. The intermediate period region between points c and d, T, < T,, < Ty, is
called the velocity-sensitive region because structural response appears to be better related
to ground velocity than to other ground motion parameters. For a particular ground motion,
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Figure 6.8.3 Response spectrum for El Centro ground motion shown by a solid line
together with an idealized version shown by a dashed line; { = 5%.

the periods 7y, Ty, T,, and T, on the idealized spectrum are independent of damping, but
T, and T, vary with damping.

The preceding observations and discussion have brought out the usefulness of the
four-way logarithmic plot of the combined deformation, pseudo-velocity, and pseudo-
acceleration response spectra. These observations would be difficult to glean from the
three individual spectra.

Idealizing the spectrum by a series of straight lines a—b—c—d—e—f in the four-way
logarithmic plot is obviously not a precise process. For a given ground motion, the period
values associated with the points a, b, ¢, d, e, and f and the amplification factors for the
segments b—c, c—d, and d—e are somewhat judgmental in the way we have approached
them. However, formal curve-fitting techniques can be used to replace the actual spec-
trum by an idealized spectrum of a selected shape. In any case, the idealized spectrum in
Fig. 6.8.3 is not a close approximation to the actual spectrum. This may not be visually
apparent but becomes obvious when we note that the scales are logarithmic. As we shall
see in the next section, the greatest benefit of the idealized spectrum is in constructing a
design spectrum representative of many ground motions.



226 Earthquake Response of Linear Systems Chap. 6

0.4
en
& 07 (@)
0.4 iigo = 0.319g
04, Tn=0025ec,{=002 e
o
® 0 (b)
0.4 iit, = 0.321g “s
(d)
0.4
en
< 0 (©)
0.4 A =0321g
o 1 2 3 4 5 6 7
Time, sec

Figure 6.8.4 (a) El Centro ground acceleration; (b) total acceleration response of an SDF
system with 7, = 0.02 sec and { = 2%; (c) pseudo-acceleration response of the same
system; (d) rigid system.

The periods 7,, T, T;, Ty, T,, and Ty separating spectral regions and the ampli-
fication factors for the segments b—c, c—d, and d—e depend on the time variation of
ground motion, in particular, the relative values of peak ground acceleration, velocity, and
displacement, as indicated by their ratios: i, /iig, and ug,/1i4,. These ground motion
characteristics depend on the earthquake magnitude, fault-to-site distance, source-to-site
geology, and soil conditions at the site.

Ground motions recorded within the near-fault region of an earthquake at stations
located toward the direction of the fault rupture are qualitatively quite different from the
usual far-fault earthquake ground motions. The fault-normal component of a ground mo-
tion recorded in the near-fault region of the Northridge, California, earthquake of January
17, 1994 displays a long-period pulse in the acceleration history that appears as a coherent
pulse in the velocity and displacements histories (Fig. 6.8.6a). Such a pronounced pulse
does not exist in ground motions recorded at locations away from the near-fault region,
such as the Taft record obtained from the Kern County, California, earthquake of July 21,
1952 (Fig. 6.8.6b).

The ratios ttg,/li4, and ug,/itg, are very different between the fault normal compo-
nents of near- and far-fault motions. As apparent from the peak values noted in Fig. 6.8.6,
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Figure 6.8.5 (a) El Centro ground displacement; (b) deformation response of SDF sys-
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Figure 6.8.6 Fault-normal component of ground motions recorded at (a) Rinaldi Receiv-
ing Station, 1994 Northridge earthquake, and (b) Taft, 1952 Kern County earthquake.

the ratio 14, /ii,4, for near-fault motions is much larger than the ratio for far-fault motions,
whereas the ratio u,, /it g, for near-fault motions is much smaller. As a result, the response
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Figure 6.8.7 Idealized response spectra for fault-normal component of three near-fault
ground motion records—LP89Lex: Lexington Dam, 1989 Loma Prieta earthquake; NR94rrs:
Rinaldi Receiving Station, 1994 Northridge earthquake; and KB95tato: Takatori Station,
1994 Hygogo-Ken-Nanbu (or Kobe) earthquake—and of the 1952 Taft record; { = 5%.

spectra for near- and far-fault motions are very different in shape. Shown in Fig. 6.8.7 are
the idealized versions of response spectra for the fault normal components of one far-fault
motion—the Taft motion of Fig. 6.8.6a—and for three near-fault motions—including the
one in Fig. 6.8.6b—from earthquakes of similar magnitudes. Comparing them indicates
that the velocity-sensitive region is much narrower and shifted to a longer period for near-
fault motions, and their acceleration- and displacement-sensitive regions are much wider
than those for far-fault motions. Despite these differences, researchers have demonstrated
that response trends identified earlier from the three spectral regions of far-fault ground
motions are generally valid for the corresponding spectral regions of near-fault ground
motions. We return to this assertion in Section 22.3.3.

We now turn to damping, which has significant influence on the earthquake response
spectrum (Figs. 6.6.4 to 6.6.6). The zero damping curve is marked by abrupt jaggedness,
which indicates that the response is very sensitive to small differences in the natural vibra-
tion period. The introduction of damping makes the response much less sensitive to the
period.

Damping reduces the response of a structure, as expected, and the reduction achieved
with a given amount of damping is different in the three spectral regions. In the limit as
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T, — 0, damping does not affect the response because the structure moves rigidly with
the ground. In the other limit as 7,, — oo, damping again does not affect the response be-
cause the structural mass stays still while the ground underneath moves. Among the three
period regions defined earlier, the effect of damping tends to be greatest in the velocity-
sensitive region of the spectrum. In this spectral region the effect of damping depends on
the ground motion characteristics. If the ground motion is nearly harmonic over many cy-
cles (e.g., the record from Mexico City shown in Fig. 6.1.3), the effect of damping would be
especially large for systems near “resonance” (Chapter 3). If the ground motion is short in
duration with only a few major cycles (e.g., the record from Parkfield, California, shown
in Fig. 6.1.3), the influence of damping would be small, as in the case of pulse excitations
(Chapter 4).

Figure 6.8.8 shows the peak pseudo-acceleration A(¢), normalized relative to
A(¢ = 0), plotted as a function of ¢ for several 7, values. These are some of the data
from the response spectrum of Figs. 6.6.4 and 6.6.5 replotted in a different format. Ob-
serve that the effect of damping is stronger for smaller damping values. This means that
if the damping ratio is increased from 0 to 2%, the reduction in response is greater than
the response reduction, due to an increase in damping from 10% to 12%. The effect of
damping in reducing the response depends on the period 7, of the system, but there is no
clear trend from Fig. 6.8.8. This is yet another indication of the complexity of structural
response to earthquakes.

The motion of a structure and the associated forces could be reduced by increas-
ing the effective damping of the structure. The addition of dampers achieves this goal
without significantly changing the natural vibration periods of the structure. Viscoelastic
dampers have been introduced in many structures; for example, 10,000 dampers were

Figure 6.8.8 Variation of peak

0 2 5 10 20  Ppseudo-acceleration with damping for

systems with 7, = 0.2, 0.5, 1, 3, and 5 sec;

Damping ratio §, % El Centro ground motion.
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installed throughout the height of each tower of the World Trade Center in New York
City to reduce wind-induced motion to within a comfortable range for the occupants. In
recent years there is a growing interest in developing dampers suitable for structures in
earthquake-prone regions. Because the inherent damping in most structures is relatively
small, their earthquake response can be reduced significantly by the addition of dampers.
These can be especially useful in improving the seismic safety of an existing structure. We
will return to this topic in Chapter 7.

6.9 ELASTIC DESIGN SPECTRUM

In this section we introduce the concept of earthquake design spectrum for elastic systems
and present a procedure to construct it from estimated peak values for ground acceleration,
ground velocity, and ground displacement.

The design spectrum should satisfy certain requirements because it is intended for
the design of new structures, or the seismic safety evaluation of existing structures, to resist
future earthquakes. For this purpose the response spectrum for a ground motion recorded
during a past earthquake is inappropriate. The jaggedness in the response spectrum, as
seen in Fig. 6.6.4, is characteristic of that one excitation. The response spectrum for another
ground motion recorded at the same site during a different earthquake is also jagged, but the
peaks and valleys are not necessarily at the same periods. This is apparent from Fig. 6.9.1,
where the response spectra for ground motions recorded at the same site during three past
earthquakes are plotted. Similarly, it is not possible to predict the jagged response spectrum

Figure 6.9.1 Response spectra for the
north—south component of ground motions
recorded at the Imperial Valley Irrigation
District substation, El Centro, California,
during earthquakes of May 18, 1940;
February 9, 1956; and April 8, 1968.

T,, sec ¢ =2%.
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in all its detail for a ground motion that may occur in the future. Thus the design spectrum
should consist of a set of smooth curves or a series of straight lines with one curve for each
level of damping.

The design spectrum should, in a general sense, be representative of ground motions
recorded at the site during past earthquakes. If none have been recorded at the site, the
design spectrum should be based on ground motions recorded at other sites under similar
conditions. The factors that one tries to match in the selection include the magnitude of
the earthquake, the distance of the site from the causative fault, the fault mechanism, the
geology of the travel path of seismic waves from the source to the site, and the local soil
conditions at the site. While this approach is feasible for some parts of the world, such as
California and Japan, where numerous ground motion records are available, in many other
regions it is hampered by the lack of a sufficient number of such records. In such situa-
tions compromises in the approach are necessary by considering ground motion records
that were recorded for conditions different from those at the site. Detailed discussion of
these issues is beyond the scope of this book. The presentation here is focused on the nar-
row question of how to develop the design spectrum that is representative of an available
ensemble (or set) of recorded ground motions.

The design spectrum is based on statistical analysis of the response spectra for the
ensemble of ground motions. Suppose that / is the number of ground motions in the en-
semble, the ith ground motion is denoted by u’g (¢), and ufgo, b't;o, and iii,o are its peak
displacement, velocity, and acceleration, respectively. Each ground motion is normalized
(scaled up or down) so that all ground motions have the same peak ground acceleration,
say iig,; other bases for normalization can be chosen. The response spectrum for each
normalized ground motion is computed by the procedures described in Section 6.6. At
each period 7, there are as many spectral values as the number / of ground motion records
in the ensemble: D', Vi, and A’ (i = 1,2, ..., I), the deformation, pseudo-velocity, and
pseudo-acceleration spectral ordinates. Such data were generated for an ensemble of 10
earthquake records, and selected aspects of the results are presented in Fig. 6.9.2. The
quantities u,,, g0, and iig, in the normalized scales of Fig. 6.9.2 are the average values
of the peak ground displacement, velocity, and acceleration—averaged over the / ground
motions. Statistical analysis of these data provide the probability distribution for the spec-
tral ordinate, its mean value, and its standard deviation at each period 7,,. The probability
distributions are shown schematically at three selected 7,, values, indicating that the coef-
ficient of variation (= standard deviation = mean value) varies with 7,,. Connecting all
the mean values gives the mean response spectrum. Similarly connecting all the mean-
plus-one-standard-deviation values gives the mean-plus-one-standard-deviation response
spectrum. Observe that these two response spectra are much smoother than the response
spectrum for an individual ground motion (Fig. 6.6.4). As shown in Fig. 6.9.2, such a
smooth spectrum curve lends itself to idealization by a series of straight lines much better
than the spectrum for an individual ground motion (Fig. 6.8.3).

Researchers have developed procedures to construct such design spectra from ground
motion parameters. One such procedure, which is illustrated in Fig. 6.9.3, will be summa-

1

rized later. The recommended period values T, = 3 sec, T, = % sec, T, = 10 sec, and

Ty = 33 sec, and the amplification factors a4, oy, and ap for the three spectral regions,
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TABLE 6.9.1 AMPLIFICATION FACTORS: ELASTIC DESIGN SPECTRA

Median (50th percentile) One Sigma (84.1th percentile)

Damping, ¢
(%) @y ay  ap ay  ay ap
1 321 231 1.82 438 3.38 2.73
2 274 2.03 1.63 3.66 292 2.42
5 212 1.65 1.39 271 2.30 2.01
10 1.64 137 1.20 1.99 1.84 1.69
20 1.17 1.08 1.01 1.26 1.37 1.38

Source: N. M. Newmark and W. J. Hall, Earthquake Spectra and Design, Earth-
quake Engineering Research Institute, Berkeley, Calif., 1982, pp. 35 and 36.

TABLE 6.9.2 AMPLIFICATION FACTORS: ELASTIC DESIGN SPECTRA?

Median (50th percentile) One Sigma (84.1th percentile)

as 3.21-0.68 In ¢ 438 —1.04 In ¢
ay 2.31—041 In ¢ 3.38—0.67 In ¢
ap 1.82—0.27 In ¢ 273-0451In ¢

Source: N. M. Newmark and W. J. Hall, Earthquake Spectra and
Design, Earthquake Engineering Research Institute, Berkeley, Calif.,
1982, pp. 35 and 36.

“Damping ratio in percent.

were developed by the preceding analysis of a larger ensemble of ground motions recorded
on firm ground (rock, soft rock, and competent sediments). The amplification factors
for two different nonexceedance probabilities, 50% and 84.1%, are given in Table 6.9.1
for several values of damping and in Table 6.9.2 as a function of damping ratio. The
50% nonexceedance probability represents the median value of the spectral ordinates and
the 84.1% approximates the mean-plus-one-standard-deviation value assuming lognormal
probability distribution for the spectral ordinates.

Observe that the period values 7, T, T,, and Ty are fixed; the values in Fig. 6.9.3
are for firm ground. Period values 7, and T, are determined by the intersections of the
constant-A (= alig,), constant-V (= ayiig,), and constant-D (= apug,) branches of the
spectrum. Because a4, ay, and op are functions of ¢ (Tables 6.9.1 and 6.9.2), T, and T,
depend on the damping ratio.

Summary. A procedure to construct a design spectrum is now summarized with
reference to Fig. 6.9.3:

1. Plot the three dashed lines corresponding to the peak values of ground acceleration
ligo, velocity 1t,,, and displacement ug, for the design ground motion.

2. Obtain from Table 6.9.1 or 6.9.2 the values for a4, ay, and «p for the ¢ selected.
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3. Multiply iig, by the amplification factor a4 to obtain the straight line b—c represent-
ing a constant value of pseudo-acceleration A.

4. Multiply u,, by the amplification factor ey to obtain the straight line c—d represent-
ing a constant value of pseudo-velocity V.

5. Multiply u,, by the amplification factor op to obtain the straight line d—e represent-
ing a constant value of deformation D.

6. Draw the line A = ii,, for periods shorter than 7, and the line D = u,, for periods
longer than 7.

7. The transition lines a—b and e—f complete the spectrum.

We now illustrate use of this procedure by constructing the 84.1th percentile design
spectrum for systems with 5% damping. For convenience, a peak ground acceleration
iig, = lg is selected; the resulting spectrum can be scaled by 7 to obtain the design spec-
trum corresponding to iig, = ng. Consider also that no specific estimates for peak ground
velocity u,, and displacement u,, are provided; thus typical values i, /iigs, = 48 in./sec/g
and iigo X Ug,/ u;o = 6, recommended for firm ground, are used. For iig, = 1g, these ratios
give iy, = 48 in./sec and u,, = 36 in.

The design spectrum shown in Fig. 6.9.4 is determined by the following steps:

1. The peak parameters for the ground motion: iig, = 1g, iy, = 48 in./sec, and ug, =
36 in. are plotted.

2. From Table 6.9.1, the amplification factors for the 84.1th percentile spectrum and
5% damping are obtained: a4 = 2.71, oy = 2.30, and ap = 2.01.

3-5. The ordinate for the constant-A branch is A = 1g x 2.71 = 2.71g, for the con-
stant-V branch: V = 48 x 2.30 = 110.4, and for the constant-D branch: D =
36 x 2.01 = 72.4. The three branches are drawn as shown.

6. The line A = 1gis plotted for 7, < % sec and D = 36 in. for 7,, > 33 sec.

7. The transition line b—a is drawn to connect the point A = 2.71g at 7, = % sec to
ligy = lgatT, = % sec. Similarly, the transition line e—f is drawn to connect the

point D =724 at T, = 10 sec to ug, = 36 in. at T, = 33 sec.

With the pseudo-velocity design spectrum known (Fig. 6.9.4), the pseudo-
acceleration design spectrum and the deformation design spectrum are determined using
Eq. (6.6.6) and plotted in Figs. 6.9.5 and 6.9.6, respectively. Observe that A approaches
ligo = lgat T, = 0 and D tends to u,, = 36 in. at 7, = 50 sec. The design spectrum can
be defined completely by numerical values for 7, Ty, T;, T4, T., and Ty, and equations for
A(T,), V(T,), or D(T,) for each branch of the spectrum. As mentioned before, some of
these periods—T7, Ty, T, and Ty—are fixed, but others—7,. and T;—depend on damping.
The intersections of A = 2.71g, V = 110.4 in./sec, and D = 72.4 in. are determined from
Eq. (6.6.6): T, = 0.66 sec and T; = 4.12 sec for ¢ = 5%. Equations describing various
branches of the pseudo-acceleration design spectrum are given in Fig. 6.9.5.

Repeating the preceding construction of the design spectrum for additional values
of the damping ratio leads to Figs. 6.9.7 to 6.9.10. This, then, is the design spectrum for
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Figure 6.9.7 Pseudo-velocity design spectrum for ground motions with iig, = 1g, tig, =
48 in./sec, and ug, = 36in.; ¢ = 1,2, 5, 10, and 20%.
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ground motions on firm ground with ii,, = 1g, itg, = 48 in./sec, and u,, = 36 in. in three
different forms: pseudo-velocity, pseudo-acceleration, and deformation. Observe that the
pseudo-acceleration design spectrum has been plotted in two formats: logarithmic scales
(Fig. 6.9.8) and linear scales (Fig. 6.9.9).

The elastic design spectrum provides a basis for calculating the design force and
deformation for SDF systems to be designed to remain elastic. For this purpose the design
spectrum is used in the same way as the response spectrum was used to compute peak
response; see Examples 6.2 to 6.6. The errors in reading spectral ordinates from a four-way
logarithmic plot can be avoided, however, because simple functions of 7;, define various
branches of the spectrum in Figs. 6.9.4 to 6.9.6.

Parameters that enter into construction of the elastic design spectrum should be
selected considering the factors that influence ground motion mentioned previously. Thus
the selection of design ground motion parameter iig,, ig,, and iy, should be based on
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Figure 6.9.8 Pseudo-acceleration design spectrum (84.1th percentile) for ground mo-
tions with iig, = 1g, 11, =48 in./sec, and ug, = 36 in.; ¢ =1, 2, 5, 10, and 20%.
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Figure 6.9.9 Pseudo-acceleration design spectrum (84.1th percentile) for ground mo-
tions with iig, = 1g, 11, =48 in./sec, and ug, = 36 in.; ¢ =1, 2, 5, 10, and 20%.
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Figure 6.9.10 Deformation design spectrum (84.1th percentile) for ground motions with
iigo = 1g, g =48 in./sec, and uy, = 361in.; ¢ =1, 2,5, 10, and 20%.



Sec. 6.10 Comparison of Design and Response Spectra 239

earthquake magnitude, distance to the earthquake fault, fault mechanism, wave-travel-path
geology, and local soil conditions. Results of research on these factors and related is-
sues are available; they are used to determine site-dependent design spectra for important
projects. Similarly, numerical values for the amplification factors a4, oy, and «p should
be chosen consistent with the expected frequency content of the ground motion.

The selected values of iiy,, tg,, and ug, are consistent with i, /ii,, = 48 in./sec/g
and iig, X g,/ u§ , = 0. These ratios are considered representative of ground motions on
firm ground. For such sites the resulting spectrum may be scaled to conform to the peak
ground acceleration estimated for the site. Thus if this estimate is 0.4g, the spectrum of
Figs. 6.9.7 to 6.9.9 multiplied by 0.4 gives the design spectrum for the site. Such a simple
approach may be reasonable if a site-specific seismic hazard analysis is not planned.

6.10 COMPARISON OF DESIGN AND RESPONSE SPECTRA

It is instructive to compare the “standard” design spectrum developed in Section 6.9 for
firm ground with an actual response spectrum for similar soil conditions. Figure 6.10.1
shows a standard design spectrum for ii,, = 0.319g, the peak acceleration for the El
Centro ground motion; the implied values for iy, and ug, are 15.3 in./sec and 11.5 in.,
respectively, based on the standard ratios mentioned in the preceding paragraph. Also
shown in Fig. 6.10.1 is the response spectrum for the El Centro ground motion; recall that
the actual peak values for this motion are iy, = 13.04 in./sec and uz, = 8.40 in. The
El Centro response spectrum agrees well with the design spectrum in the acceleration-
sensitive region, largely because the peak accelerations for the two are matched. However,
the two spectra are considerably different in the velocity-sensitive region because of the
differences (15.3 in./sec versus 13.04 in./sec) in the peak ground velocity. Similarly, they
are even more different in the displacement-sensitive region because of the larger differ-
ences (11.5 in. versus 8.4 in.) in the peak ground displacement.

The response spectrum for an individual ground motion differs from the design
spectrum even if the peak values iig,, l4,, and u,, for the two spectra are matched. In
Fig. 6.10.2 the response spectrum for the El Centro ground motion is compared with the
design spectrum for ground motion parameters ii,, = 0.319g, 11y, = 13.04 in./sec, and
g, = 8.40 in.—the same as for the El Centro ground motion. Two design spectra are
included: the 50th percentile spectrum and the 84.1th percentile spectrum. The agreement
between the response and design spectra is now better because the ground motion parame-
ters are matched. However, significant differences remain: over the acceleration-sensitive
region the response spectrum is close to the 84.1th percentile design spectrum; over the
velocity- and displacement-sensitive regions the response spectrum is between the two de-
sign spectra for some periods and below the median design spectrum for other periods.

Such differences are to be expected because the design spectrum is not intended
to match the response spectrum for any particular ground motion but is constructed to
represent the average characteristics of many ground motions. These differences are due
to the inherent variability in ground motions as reflected in the probability distributions of
the amplification factors and responses; see Fig. 6.9.2.
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6.11 DISTINCTION BETWEEN DESIGN AND RESPONSE SPECTRA

A design spectrum differs conceptually from a response spectrum in two important ways.
First, the jagged response spectrum is a plot of the peak response of all possible SDF
systems and hence is a description of a particular ground motion. The smooth design
spectrum, however, is a specification of the level of seismic design force, or deformation,
as a function of natural vibration period and damping ratio. This conceptual difference
between the two spectra should be recognized, although in some situations, their shapes
may be similar. Such is the case when the design spectrum is determined by statistical
analysis of several comparable response spectra.

Second, for some sites a design spectrum is the envelope of two different elas-
tic design spectra. Consider a site in southern California that could be affected by two
different types of earthquakes: a Magnitude 6.5 earthquake originating on a nearby fault
and a Magnitude 8.5 earthquake on the distant San Andreas fault. The design spectrum
for each earthquake could be determined by the procedure developed in Section 6.9. The
ordinates and shapes of the two design spectra would differ, as shown schematically in
Fig. 6.11.1, because of the differences in earthquake magnitude and distance of the site
from the earthquake fault. The design spectrum for this site is defined as the envelope
of the design spectra for the two different types of earthquakes. Note that the short-period
portion of the design spectrum is governed by the nearby earthquake, while the long-period
portion of the design spectrum is controlled by the distant earthquake.

Before leaving the subject, we emphasize that this limited presentation on construct-
ing elastic design spectra has been narrowly focused on methods that are directly related
to structural dynamics that we have learned. In contrast, modern methods for constructing
design spectra are based on probabilistic seismic hazard analysis, which considers the past
rate of seismic activity on all faults that contribute to the seismic hazard at the site, leading
to the uniform hazard spectrum.

Y Moderate-sized earthquake at small
distance from site

Design spectrum for site

Pseudo-acceleration A, g

\ Large earthquake at large
distance from site

Natural vibration period T, sec

Figure 6.11.1 Design spectrum defined as the envelope of design spectra for earthquakes
originating on two different faults.
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6.12 VELOCITY AND ACCELERATION RESPONSE SPECTRA

We now return to the relative velocity response spectrum and the acceleration response
spectrum that were introduced in Section 6.5. In one sense there is little motivation to
study these “true” spectra because they are not needed to determine the peak deformations
and forces in a system; for this purpose the pseudo-acceleration (or pseudo-velocity or
deformation) response spectrum is sufficient. A brief discussion of these “true” spectra
is included, however, because the distinction between them and “pseudo” spectra has not
always been made in the early publications, and the two have sometimes been used inter-

changeably.
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Figure 6.12.1 (a) Comparison between pseudo-velocity and relative-velocity response
spectra; ¢ = 10%; (b) ratio V /u, for ¢ = 0, 10, and 20%.
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To study the relationship between these spectra, we write them in mathematical form.
The deformation response of a linear SDF system to an arbitrary ground motion with zero
initial conditions is given by the convolution integral, Eq. (4.2.2), adapted for earthquake
excitation:

u(t) = / lig(T)h(t —7)dt (6.12.1)
0

where the unit impulse response function, i (f — 7), is given by Eq. (4.1.7). Thus,
1 t
u(t)y = —— f iig(T)e "D sin[wp(t — 1)1 dT (6.12.2)
wp Jo
Using theorems from calculus to differentiate under the integral sign leads to
t
u(t) = —cwuu(t) —/ lig(r)e "0 cos[wp (t — 7)] dt (6.12.3)
0

An equation for the acceleration i’(¢) of the mass can be obtained by differentiating
Eq. (6.12.3) and adding the ground acceleration iiy (). However, the equation of motion
for the system [Eq. (6.2.1)] provides a more convenient alternative:

i (1) = —w2u(t) — 20w, (r) (6.12.4)

As defined earlier, the relative-velocity spectrum and acceleration spectrum are plots of i,
and i, the peak values of u(¢) and i’ (1), respectively, as functions of T,,.

6.12.1 Pseudo-velocity and Relative-Velocity Spectra

In Fig. 6.12.1a the relative-velocity response spectrum is compared with the pseudo-velocity
response spectrum, both for El Centro ground motion and systems with ¢ = 10%. The lat-
ter spectrum is simply one of the curves of Fig. 6.6.4 presented in a different form. Each
point on the relative-velocity response spectrum represents the peak velocity of an SDF
system obtained from u(¢) determined by the numerical methods of Chapter 5. The differ-
ences between the two spectra depend on the natural period of the system. For long-period
systems, V is less than u, and the differences between the two are large. This can be under-
stood by recognizing that as 7, becomes very long, the mass of the system stays still while
the ground underneath moves. Thus, as T, — 00, D — u,, (see Section 6.8 and Fig. 6.8.5)
and u, — Ug,. Now D — u,, implies that V' — 0 because of Eq. (6.6.1). These trends
are confirmed by the results presented in Fig. 6.12.1a. For short-period systems V exceeds
i,, with the differences increasing as 7,, becomes shorter. For medium-period systems, the
differences between V and u,, are small over a wide range of 7.

In Fig. 6.12.1b the ratio V /u, is plotted for three damping values, ¢ = 0, 10, and
20%. The differences between the two spectra, as indicated by how much the ratio V /u,
differs from unity, are smallest for undamped systems and increase with damping. This can
be explained from Egs. (6.12.2) and (6.12.3) by observing that for { = 0, «(¢) and w, u(t)
are the same except for the sine and cosine terms in the integrand. With damping, the first
term in Eq. (6.12.3) contributes to (), suggesting that () would differ from w,u(¢) to a
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Figure 6.12.2 (a) Comparison between pseudo-acceleration and acceleration response
spectra; £ = 10%; (b) ratio A/ﬁf, for ¢ = 0, 10, and 20%.

greater degree. Over the medium-period range V can be taken as an approximation to i,
for the practical range of damping.

6.12.2 Pseudo-acceleration and Acceleration Spectra

The pseudo-acceleration and acceleration response spectra are identical for systems with-
out damping. This is apparent from Eq. (6.12.4), which for undamped systems specializes
to

i (1) = —lu(t) (6.12.5)
The peak values of the two sides are therefore equal, that is,
i = wlu, = 0’D = A (6.12.6)

With damping, Eq. (6.12.5) is not valid at all times, but only at the time instants when
i(t) = 0, in particular when u(¢) attains its peak u,. At this instant, —wZu, represents
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the true acceleration of the mass. The peak value i, of i’ (r) does not occur at the same
instant, however, unless ¢ = 0. The peak values ui, and A occur at the same time and are
equal only for ¢ = 0.

Equation (6.12.4) suggests that the differences between A and i/ are expected to
increase as the damping increases. This expectation is confirmed by the data presented in
Fig. 6.12.2, where the pseudo-acceleration and the acceleration spectra for the El Centro
ground motion are plotted for { = 10%, and the ratio A/ii’, is presented for three damping
values. The difference between the two spectra is small for short-period systems and is of
some significance only for long-period systems with large values of damping. Thus for a
wide range of conditions the pseudo-acceleration may be treated as an approximation to
the true acceleration.

As the natural vibration period 7,, of a system approaches infinity, the mass of the
system stays still while the ground underneath moves. Thus, as 7, — oo, i/, — 0 and
D — ug,; the latter implies that A — 0 because of Eq. (6.6.3). Both A and (i;), — 0 as
T, — oo, but at different rates, as evident from the ratio A/ii’, plotted as a function of T,;
A — 0 at a much faster rate because of Tn2 in the denominator of Eq. (6.6.3).

Another way of looking at the differences between the two spectra is by recalling
that m A is equal to the peak value of the elastic-resisting force. In contrast, mii!, is equal
to the peak value of the sum of elastic and damping forces. As seen in Fig. 6.12.3b, the
pseudo-acceleration is smaller than the true acceleration, because it is that part of the true
acceleration which gives the elastic force.

Parenthetically, we note that the widespread adoption of the prefix pseudo is in one
sense misleading. The literal meaning of pseudo (false) is not really appropriate since we
are dealing with approximation rather than with concepts that are in any sense false or in-
appropriate. In fact, there is rarely the need to use the “pseudo”-spectra as approximations
to the “true” spectra because the latter can be computed by the same numerical procedures
as those used for the former. Furthermore, as emphasized earlier, the pseudo quantities
provide the exact values of the desired deformation and forces.
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APPENDIX 6: EL CENTRO, 1940 GROUND MOTION

The north—south component of the ground motion recorded at a site in El Centro,
California, during the Imperial Valley, California, earthquake of May 18, 1940 is shown
in Fig. 6.1.4. This particular version of this record is used throughout this book, and is
required in solving some of the end-of-chapter problems. Numerical values for the ground
acceleration in units of g, the acceleration due to gravity, are presented in Table A6.1.
This includes 1559 data points at equal time spacings of 0.02 sec, to be read row by row;
the first value is at t+ = 0.02 sec; acceleration at t+ = 0 is zero. These data are also
available electronically from the National Information Service for Earthquake Engineering
(NISEE), University of California at Berkeley, on the World Wide Web at the following
URL: <http://nisee.berkeley.edu/data/strong_motion/a.k.chopra/index.html>.
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TABLE A6.1 GROUND ACCELERATION DATA

0.00630  0.00364  0.00099  0.00428  0.00758  0.01087  0.00682  0.00277
—0.00128  0.00368  0.00864  0.01360  0.00727  0.00094  0.00420  0.00221
0.00021 0.00444  0.00867  0.01290  0.01713 —0.00343 —0.02400 —0.00992
0.00416  0.00528  0.01653  0.02779  0.03904  0.02449  0.00995  0.00961
0.00926  0.00892 —0.00486 —0.01864 —0.03242 —0.03365 —0.05723 —0.04534
—0.03346 —0.03201 —0.03056 —0.02911 —0.02766 —0.04116 —0.05466 —0.06816
—0.08166 —0.06846 —0.05527 —0.04208 —0.04259 —0.04311 —0.02428 —0.00545
0.01338  0.03221 0.05104  0.06987  0.08870  0.04524  0.00179 —0.04167
—0.08513 —0.12858 —0.17204 —0.12908 —0.08613 —0.08902 —0.09192 —0.09482
—0.09324 —0.09166 —0.09478 —0.09789 —0.12902 —0.07652 —0.02401 0.02849
0.08099  0.13350  0.18600  0.23850  0.21993  0.20135  0.18277  0.16420
0.14562  0.16143  0.17725  0.13215  0.08705  0.04196 —0.00314 —0.04824
—0.09334 —0.13843 —0.18353 —0.22863 —0.27372 —0.31882 —0.25024 —0.18166
—0.11309 —0.04451 0.02407  0.09265  0.16123  0.22981 0.29839  0.23197
0.16554  0.09912  0.03270 —0.03372 —0.10014 —0.16656 —0.23299 —0.29941
—0.00421 0.29099  0.22380  0.15662  0.08943  0.02224 —0.04495  0.01834
0.08163  0.14491 0.20820  0.18973  0.17125  0.13759  0.10393  0.07027
0.03661 0.00295 —0.03071 —0.00561 0.01948  0.04458  0.06468  0.08478
0.10487  0.05895  0.01303 —0.03289 —0.07882 —0.03556  0.00771 0.05097
0.01013 —0.03071 —0.07156 —0.11240 —0.15324 —0.11314 —0.07304 —0.03294
0.00715 —0.06350 —0.13415 —0.20480 —0.12482 —0.04485  0.03513  0.11510
0.19508  0.12301 0.05094 —0.02113 —0.09320 —0.02663  0.03995  0.10653
0.17311 0.11283  0.05255 —0.00772  0.01064  0.02900  0.04737  0.06573
0.02021 —0.02530 —0.07081 —0.04107 —0.01133  0.00288  0.01709  0.03131
—0.02278 —0.07686 —0.13095 —0.18504 —0.14347 —0.10190 —0.06034 —0.01877
0.02280 —0.00996 —0.04272 —0.02147 —0.00021 0.02104 —0.01459 —0.05022
—0.08585 —0.12148 —0.15711 —0.19274 —0.22837 —0.18145 —0.13453 —0.08761
—0.04069  0.00623  0.05316  0.10008  0.14700  0.09754  0.04808 —0.00138
0.05141 0.10420  0.15699  0.20979  0.26258  0.16996  0.07734 —0.01527
—0.10789 —0.20051 —0.06786  0.06479  0.01671 —0.03137 —0.07945 —0.12753
—0.17561 —0.22369 —0.27177 —0.15851 —0.04525  0.06802  0.18128  0.14464
0.10800  0.07137  0.03473  0.09666  0.15860  0.22053  0.18296  0.14538
0.10780  0.07023  0.03265  0.06649  0.10033  0.13417  0.10337  0.07257
0.04177  0.01097 —0.01983  0.04438  0.10860  0.17281 0.10416  0.03551
—0.03315 —0.10180 —0.07262 —0.04344 —0.01426  0.01492 —0.02025 —0.05543
—0.09060 —0.12578 —0.16095 —0.19613 —0.14784 —0.09955 —0.05127 —0.00298
—0.01952 —-0.03605 —0.05259 —0.04182 —0.03106 —0.02903 —0.02699  0.02515
0.01770  0.02213  0.02656  0.00419 —0.01819 —0.04057 —0.06294 —0.02417
0.01460  0.05337  0.02428 —0.00480 —0.03389 —0.00557  0.02274  0.00679
—0.00915 —0.02509 —0.04103 —0.05698 —0.01826  0.02046  0.00454 —0.01138
—0.00215  0.00708  0.00496  0.00285  0.00074 —0.00534 —0.01141 0.00361
0.01863  0.03365  0.04867  0.03040  0.01213 —0.00614 —0.02441 0.01375
0.01099  0.00823  0.00547  0.00812  0.01077 —0.00692 —0.02461 —0.04230
—0.05999 —-0.07768 —0.09538 —0.06209 —0.02880  0.00448  0.03777  0.01773
—0.00231 —0.02235  0.01791 0.05816  0.03738  0.01660 —0.00418 —0.02496
—0.04574 —0.02071 0.00432  0.02935  0.01526  0.01806  0.02086  0.00793
—0.00501 —0.01795 —0.03089 —0.01841 —0.00593  0.00655 —0.02519 —0.05693
—0.04045 —0.02398 —0.00750  0.00897  0.00384 —0.00129 —0.00642 —0.01156
—0.02619 —0.04082 —0.05545 —0.04366 —0.03188 —0.06964 —0.05634 —0.04303
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TABLE A6.1 GROUND ACCELERATION DATA (Continued)

—0.02972 —-0.01642 —0.00311 0.01020  0.02350  0.03681 0.05011 0.02436
—0.00139 —0.02714 —0.00309  0.02096  0.04501 0.06906  0.05773  0.04640
0.03507  0.03357  0.03207  0.03057  0.03250  0.03444  0.03637  0.01348
—0.00942 —0.03231 —0.02997 —0.03095 —0.03192 —0.02588 —0.01984 —0.01379
—0.00775 -0.01449 —-0.02123  0.01523  0.05170  0.08816  0.12463  0.16109
0.12987  0.09864  0.06741 0.03618  0.00495  0.00420  0.00345  0.00269
—0.05922 —-0.12112 —0.18303 —0.12043 —0.05782  0.00479  0.06740  0.13001
0.08373  0.03745  0.06979  0.10213 —0.03517 —0.17247 —0.13763 —0.10278
—0.06794 —0.03310 —0.03647 —0.03984 —0.00517  0.02950  0.06417  0.09883
0.13350  0.05924 —0.01503 —0.08929 —0.16355 —0.06096  0.04164  0.01551
—0.01061 —0.03674 —0.06287 —0.08899 —0.05430 —0.01961 0.01508  0.04977
0.08446  0.05023  0.01600 —0.01823 —0.05246 —0.08669 —0.06769 —0.04870
—0.02970 —0.01071 0.00829 —0.00314  0.02966  0.06246 —0.00234 —0.06714
—0.04051 —0.01388  0.01274  0.00805  0.03024  0.05243  0.02351 —0.00541
—0.03432 —-0.06324 —0.09215 —0.12107 —0.08450 —0.04794 —0.01137  0.02520
0.06177  0.04028  0.01880  0.04456  0.07032  0.09608  0.12184  0.06350
0.00517 —0.05317 —0.03124 —0.00930  0.01263  0.03457  0.03283  0.03109
0.02935  0.04511 0.06087  0.07663  0.09239  0.05742  0.02245 —0.01252
0.00680  0.02611 0.04543  0.01571 —0.01402 —0.04374 —0.07347 —0.03990
—0.00633  0.02724  0.06080  0.03669  0.01258 —0.01153 —0.03564 —0.00677
0.02210  0.05098  0.07985  0.06915  0.05845  0.04775  0.03706  0.02636
0.05822  0.09009  0.12196  0.10069  0.07943  0.05816  0.03689  0.01563
—0.00564 —0.02690 —0.04817 —0.06944 —0.09070 —0.11197 —0.11521 —0.11846
—0.12170 —0.12494 —0.16500 —0.20505 —0.15713 —0.10921 —0.06129 —0.01337
0.03455  0.08247  0.07576  0.06906  0.06236  0.08735  0.11235  0.13734
0.12175  0.10616 ~ 0.09057  0.07498  0.08011 0.08524  0.09037  0.06208
0.03378  0.00549 —0.02281 —0.05444 —0.04030 —0.02615 —0.01201 —0.02028
—0.02855 —0.06243 —0.03524 —0.00805 —0.04948 —0.03643 —0.02337 —0.03368
—0.01879 —0.00389  0.01100  0.02589  0.01446  0.00303 —0.00840  0.00463
0.01766  0.03069  0.04372  0.02165 —0.00042 —0.02249 —0.04456 —0.03638
—0.02819 —0.02001 —0.01182 —0.02445 —0.03707 —0.04969 —0.05882 —0.06795
—0.07707 —0.08620 —0.09533 —0.06276 —0.03018  0.00239  0.03496  0.04399
0.05301 0.03176 ~ 0.01051 —0.01073 —0.03198 —0.05323  0.00186  0.05696
0.01985 —0.01726 —0.05438 —0.01204  0.03031 0.07265  0.11499  0.07237
0.02975 —0.01288  0.01212  0.03711 0.03517  0.03323  0.01853  0.00383
0.00342 —0.02181 —0.04704 —0.07227 —-0.09750 —0.12273 —0.08317 —0.04362
—0.00407  0.03549  0.07504  0.11460  0.07769  0.04078  0.00387  0.00284
0.00182 —0.05513  0.04732  0.05223  0.05715  0.06206  0.06698  0.07189
0.02705 —0.01779 —0.06263 —0.10747 —0.15232 —0.12591 —0.09950 —0.07309
—0.04668 —0.02027  0.00614  0.03255  0.00859 —0.01537 —0.03932 —0.06328
—0.03322 —0.00315  0.02691 0.01196 —0.00300  0.00335  0.00970  0.01605
0.02239  0.04215  0.06191 0.08167  0.03477 —0.01212 -0.01309 —0.01407
—0.05274 —0.02544  0.00186  0.02916  0.05646  0.08376  0.01754 —0.04869
—0.02074  0.00722  0.03517 —0.00528 —0.04572 —0.08617 —0.06960 —0.05303
—0.03646 —0.01989 —0.00332  0.01325  0.02982  0.01101 —0.00781 —0.02662
—0.00563  0.01536  0.03635  0.05734  0.03159  0.00584 —0.01992 —0.00201
0.01589 —0.01024 —0.03636 —0.06249 —0.04780 —0.03311 —0.04941 —0.06570
—0.08200 —0.04980 —0.01760  0.01460  0.04680  0.07900  0.04750  0.01600
—0.01550 —0.00102  0.01347  0.02795  0.04244  0.05692  0.03781 0.01870
—0.00041 —0.01952 —0.00427  0.01098  0.02623  0.04148  0.01821 —0.00506
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TABLE A6.1 GROUND ACCELERATION DATA (Continued)

—0.00874 —0.03726 —0.06579 —0.02600  0.01380  0.05359  0.09338  0.05883
0.02429 —0.01026 —0.04480 —0.01083 —0.01869 —0.02655 —0.03441 —0.02503
—0.01564 —0.00626 —0.01009 —0.01392  0.01490  0.04372  0.03463  0.02098
0.00733 —0.00632 —0.01997  0.00767  0.03532  0.03409  0.03287  0.03164
0.02403  0.01642  0.00982  0.00322 —0.00339  0.02202 —-0.01941 —0.06085
—0.10228 —0.07847 —0.05466 —0.03084 —0.00703  0.01678  0.01946  0.02214
0.02483  0.01809 —0.00202 —0.02213 —0.00278  0.01656  0.03590  0.05525
0.07459  0.06203  0.04948  0.03692 —0.00145  0.04599  0.04079  0.03558
0.03037  0.03626  0.04215  0.04803  0.05392  0.04947  0.04502  0.04056
0.03611 0.03166  0.00614 —0.01937 —0.04489 —0.07040 —0.09592 —0.07745
—0.05899 —0.04052 —0.02206 —0.00359  0.01487  0.01005  0.00523  0.00041
—0.00441 —0.00923 —0.01189 —0.01523 —0.01856 —0.02190 —0.00983  0.00224
0.01431 0.00335 —0.00760 —0.01856 —0.00737  0.00383  0.01502  0.02622
0.01016 —0.00590 —0.02196 —0.00121 0.01953  0.04027  0.02826  0.01625
0.00424  0.00196 —0.00031 —0.00258 —0.00486 —0.00713 —0.00941 —0.01168
—0.01396 —0.01750 —0.02104 —0.02458 —0.02813 —0.03167 —0.03521 —0.04205
—0.04889 —0.03559 —0.02229 —0.00899  0.00431 0.01762  0.00714 —0.00334
—0.01383  0.01314  0.04011 0.06708  0.04820  0.02932  0.01043 —0.00845
—0.02733 —0.04621 —0.03155 —0.01688 —0.00222  0.01244  0.02683  0.04121
0.05559  0.03253  0.00946 —0.01360 —0.01432 —0.01504 —0.01576 —0.04209
—0.02685 —0.01161 0.00363  0.01887  0.03411 0.03115  0.02819  0.02917
0.03015  0.03113  0.00388 —0.02337 —0.05062 —0.03820 —0.02579 —0.01337
—0.00095  0.01146  0.02388  0.03629  0.01047 —0.01535 —0.04117 —0.06699
—0.05207 —0.03715 —0.02222 —0.00730  0.00762  0.02254  0.03747  0.04001
0.04256  0.04507  0.04759  0.05010  0.04545  0.04080  0.02876  0.01671
0.00467 —0.00738 —0.00116  0.00506 ~ 0.01128  0.01750 —0.00211 —0.02173
—0.04135 —0.06096 —0.08058 —0.06995 —0.05931 —0.04868 —0.03805 —0.02557
—0.01310 —0.00063  0.01185  0.02432  0.03680  0.04927  0.02974  0.01021
—0.00932 —0.02884 —0.04837 —0.06790 —0.04862 —0.02934 —0.01006  0.00922
0.02851 0.04779  0.02456  0.00133 —0.02190 —0.04513 —0.06836 —0.04978
—0.03120 —0.01262  0.00596  0.02453  0.04311 0.06169  0.08027  0.09885
0.06452  0.03019 —0.00414 —0.03848 —0.07281 —0.05999 —0.04717 —0.03435
—0.03231 —0.03028 —0.02824 —0.00396  0.02032  0.00313 —0.01406 —0.03124
—0.04843 —0.06562 —0.05132 —0.03702 —0.02272 —0.00843  0.00587  0.02017
0.02698  0.03379  0.04061 0.04742  0.05423  0.03535  0.01647  0.01622
0.01598  0.01574  0.00747 —0.00080 —0.00907  0.00072  0.01051 0.02030
0.03009  0.03989  0.03478  0.02967  0.02457  0.03075  0.03694  0.04313
0.04931 0.05550  0.06168 —0.00526 —0.07220 —0.06336 —0.05451 —0.04566
—0.03681 —0.03678 —0.03675 —0.03672 —0.01765  0.00143  0.02051 0.03958
0.05866  0.03556  0.01245 —0.01066 —0.03376 —0.05687 —0.04502 —0.03317
—0.02131 —0.00946  0.00239 —0.00208 —0.00654 —0.01101 —0.01548 —0.01200
—0.00851 —0.00503 —0.00154  0.00195  0.00051 —0.00092  0.01135  0.02363
0.03590  0.04818  0.06045  0.07273  0.02847 —0.01579 —0.06004 —0.05069
—0.04134 —-0.03199 —0.03135 —0.03071 —0.03007 —0.01863 —0.00719  0.00425
0.01570  0.02714  0.03858  0.02975  0.02092  0.02334  0.02576  0.02819
0.03061 0.03304  0.01371 —0.00561 —0.02494 —0.02208 —0.01923 —0.01638
—0.01353 —-0.01261 —0.01170 —0.00169  0.00833  0.01834  0.02835  0.03836
0.04838  0.03749  0.02660  0.01571 0.00482 —0.00607 —0.01696 —0.00780
0.00136  0.01052  0.01968  0.02884 —0.00504 —0.03893 —0.02342 —0.00791
0.00759  0.02310  0.00707 —0.00895 —0.02498 —0.04100 —0.05703 —0.02920
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TABLE A6.1 GROUND ACCELERATION DATA (Continued)

—0.00137  0.02645  0.05428  0.03587  0.01746 —0.00096 —0.01937 —0.03778
—0.02281 —0.00784  0.00713 ~ 0.02210  0.03707  0.05204  0.06701 0.08198
0.03085 —0.02027 —0.07140 —0.12253 —0.08644 —0.05035 —0.01426  0.02183
0.05792  0.09400  0.13009  0.03611 —0.05787 —0.04802 —0.03817 —0.02832
0.02970  0.03993  0.05017  0.06041 0.07065  0.08089 —0.00192 —0.08473
—0.01846 —0.00861 —0.03652 —0.06444 —0.06169 —0.05894 —0.05618 —0.06073
—0.06528 —0.04628 —0.02728 —0.00829  0.01071 0.02970  0.03138  0.03306
0.03474  0.03642  0.04574  0.05506  0.06439  0.07371 0.08303  0.03605
—0.01092 —-0.05790 —0.04696 —0.03602 —0.02508 —0.01414 —0.03561 —0.05708
—0.07855 —0.06304 —0.04753 —0.03203 —0.01652 —0.00102  0.00922  0.01946
—0.07032 —0.05590 —0.04148 —0.05296 —0.06443 —0.07590 —0.08738 —0.09885
—0.06798 —0.03710 —0.00623  0.02465  0.05553  0.08640  0.11728  0.14815
0.08715  0.02615 —0.03485 —0.09584 —0.07100 —0.04616 —0.02132  0.00353
0.02837  0.05321 —0.00469 —0.06258 —0.12048 —0.09960 —0.07872 —0.05784
—0.03696 —0.01608  0.00480  0.02568  0.04656  0.06744  0.08832  0.10920
0.13008  0.10995  0.08982  0.06969  0.04955  0.04006  0.03056  0.02107
0.01158  0.00780  0.00402  0.00024 —0.00354 —0.00732 —0.01110 —0.00780
—0.00450 —0.00120  0.00210  0.00540 —0.00831 —0.02203 —0.03575 —0.04947
—0.06319 —0.05046 —0.03773 —0.02500 —0.01227  0.00046  0.00482  0.00919
0.01355  0.01791 0.02228  0.00883 —0.00462 —0.01807 —0.03152 —0.02276
—0.01401 —0.00526 ~ 0.00350  0.01225  0.02101 0.01437 ~ 0.00773  0.00110
0.00823  0.01537  0.02251 0.01713 ~ 0.01175  0.00637  0.01376  0.02114
0.02852  0.03591 0.04329  0.03458  0.02587  0.01715  0.00844 —0.00027
—0.00898 —0.00126 ~ 0.00645  0.01417  0.02039  0.02661 0.03283  0.03905
0.04527  0.03639  0.02750  0.01862  0.00974  0.00086 —0.01333 —0.02752
—0.04171 —0.02812 —0.01453 —0.00094  0.01264  0.02623  0.01690  0.00756
—0.00177 —0.01111 —0.02044 —0.02977 —0.03911 —0.02442 —0.00973  0.00496
0.01965  0.03434  0.02054  0.00674 —0.00706 —0.02086 —0.03466 —0.02663
—0.01860 —0.01057 —0.00254 —0.00063  0.00128  0.00319  0.00510  0.00999
0.01488  0.00791 0.00093 —0.00605  0.00342  0.01288  0.02235  0.03181
0.04128  0.02707  0.01287 —0.00134 —0.01554 —0.02975 —0.04395 —0.03612
—0.02828 —0.02044 —0.01260 —0.00476  0.00307  0.01091 0.00984  0.00876
0.00768  0.00661 0.01234  0.01807  0.02380  0.02953  0.03526  0.02784
0.02042  0.01300 —0.03415 —0.00628 —0.00621 —0.00615 —0.00609 —0.00602
—0.00596 —0.00590 —0.00583 —0.00577 —0.00571 —0.00564 —0.00558 —0.00552
—0.00545 —0.00539 —0.00532 —0.00526 —0.00520 —0.00513 —0.00507 —0.00501
—0.00494 —0.00488 —0.00482 —0.00475 —0.00469 —0.00463 —0.00456 —0.00450
—0.00444 —0.00437 —0.00431 —0.00425 —0.00418 —0.00412 —0.00406 —0.00399
—0.00393 —0.00387 —0.00380 —0.00374 —0.00368 —0.00361 —0.00355 —0.00349
—0.00342 —0.00336 —0.00330 —0.00323 —0.00317 —0.00311 —0.00304 —0.00298
—0.00292 —-0.00285 —0.00279 —0.00273 —0.00266 —0.00260 —0.00254 —0.00247
—0.00241 —0.00235 —-0.00228 —0.00222 —0.00216 —0.00209 —0.00203 —0.00197
—0.00190 —0.00184 —0.00178 —0.00171 —0.00165 —0.00158 —0.00152 —0.00146
—0.00139 —-0.00133 —0.00127 —0.00120 —-0.00114 —0.00108 —0.00101 —0.00095
—0.00089 —0.00082 —0.00076 —0.00070 —0.00063 —0.00057 —0.00051 —0.00044
—0.00038 —0.00032 —0.00025 —0.00019 —0.00013 —0.00006  0.00000
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*6.1

*6.2
*6.3
6.4

6.5

6.6
6.7

Earthquake Response of Linear Systems Chap. 6

PROBLEMS

Determine the deformation response u(¢) for 0 < ¢ < 15 sec for an SDF system with natural
period 7, = 2 sec and damping ratio ¢ = 0 to El Centro 1940 ground motion. The ground
acceleration values are available at every At = 0.02 sec in Appendix 6. Implement the
numerical time-stepping algorithm of Section 5.2. Plot u(¢) and compare it with Fig. 6.4.1.
Solve Problem 6.1 for ¢ = 5%.

Solve Problem 6.2 by the central difference method.

Derive equations for the deformation, pseudo-velocity, and pseudo-acceleration response spec-
tra for ground acceleration iig(t) = 1tgo8(t), where §(z) is the Dirac delta function and g,
is the increment in velocity or the magnitude of the acceleration impulse. Plot the spectra for
¢ =0and 10%.

An SDF undamped system is subjected to ground motion iig () consisting of a sequence of
two acceleration impulses, each with a velocity increment g, as shown in Fig. P6.5.

(a) Plot the displacement response of the system t4/7, = %, %, % and 1. For each case show
the response to individual impulses and the combined response.

(b) Determine the deformation response spectrum for this excitation by plotting u, /(ttgo /wy)
as a function of 74 /7;,. Indicate separately the maximum occurring during ¢ < 74 and during
t>1q.

(c¢) Determine the pseudo-velocity response spectrum for this excitation with 7; = 0.5 sec by
plotting V /itg, as a function of f, = 1/T,,.

ty . ty

Figure P6.5 Figure P6.6

Repeat Problem 6.5 with the two velocity pulses acting in the same direction (Fig. P6.6).
Consider harmonic ground motion iig () = iig, sin(2mt/T).

(a) Derive equations for A and for i, in terms of the natural vibration period 7, and the
damping ratio ¢ of the SDF system. A is the peak value for the pseudo-acceleration, and i/,
is the peak value of the true acceleration. Consider only the steady-state response.

(b) Show that A and ii!, are identical for undamped systems but different for damped systems.
(¢) Graphically display the two response spectra by plotting the normalized values A /iig, and
ii! /ii g0 against T,, /T, the ratio of the natural vibration period of the system and the period of
the excitation.

*Denotes that a computer is necessary to solve this problem.
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6.8— Certain types of near-fault ground motion can be represented by a full sinusoidal cycle of

6.9 ground acceleration (Fig. P6.8) or a full cosine cycle of ground acceleration (Fig. P6.9).
Assuming that the ground velocity and displacement are both zero at time zero, plot the ground
velocity and ground displacement as a function of time. Determine the pseudo-acceleration
response spectrum for undamped systems. Plot this spectrum against t;/7,. How will the
true-acceleration response spectrum differ?

u u
8 8
[
u | u
8o go
. , \ /‘ t
td td
-u_ -u_
80 go
Figure P6.8 Figure P6.9

6.10 A 10-ft-long vertical cantilever made of a 6-in.-nominal-diameter standard steel pipe supports
a 3000-1b weight attached at the tip, as shown in Fig. P6.10. The properties of the pipe are:
outside diameter = 6.625 in., inside diameter = 6.065 in., thickness = 0.280 in., second moment
of cross-sectional area I = 28.1 in?, Young’s modulus £ = 29,000 ksi, and weight = 18.97
Ib/ft length. Determine the peak deformation and the bending stress in the cantilever due to
the El Centro ground motion; assume that { = 5%.

3000 1b

2
6” std
steel pipe

7. Figure P6.10

6.11 (a) A full water tank is supported on an 80-ft-high cantilever tower. It is idealized as an SDF
system with weight w = 100 kips, lateral stiffness k = 4 kips/in., and damping ratio ¢ = 5%.
The tower supporting the tank is to be designed for ground motion characterized by the design
spectrum of Fig. 6.9.5 scaled to 0.5g peak ground acceleration. Determine the design values
of lateral deformation and base shear.
(b) The deformation computed for the system in part (a) seemed excessive to the structural
designer, who decided to stiffen the tower by increasing its size. Determine the design val-
ues of deformation and base shear for the modified system if its lateral stiffness is 8 kips/in.;
assume that the damping ratio is still 5%. Comment on how stiffening the system has affected
the design requirements. What is the disadvantage of stiffening the system?
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6.12
6.13

6.14

6.15

6.16

6.17

Earthquake Response of Linear Systems Chap. 6

(c) If the stiffened tower were to support a tank weighing 200 kips, determine the design re-
quirements; assume for purposes of this example that the damping ratio is still 5%. Comment
on how the increased weight has affected the design requirements.

Solve Problem 6.11 modified as follows: w = 16 kips in part (a) and w = 32 kips in part (c).
Solve Problem 6.11 modified as follows: w = 1600 kips in part (a) and w = 3200 kips in
part (c).

A one-story reinforced-concrete building is idealized for structural analysis as a massless
frame supporting a dead load of 10 kips at the beam level. The frame is 24 ft wide and 12 ft
high. Each column, clamped at the base, has a 10-in.-square cross section. The Young’s
modulus of concrete is 3 x 103 ksi, and the damping ratio of the building is estimated as 5%.
If the building is to be designed for the design spectrum of Fig. 6.9.5 scaled to a peak ground
acceleration of 0.5g, determine the design values of lateral deformation and bending moments
in the columns for two conditions:

(a) The cross section of the beam is much larger than that of the columns, so the beam may
be assumed as rigid in flexure.

(b) The beam cross section is much smaller than the columns, so the beam stiffness can be
ignored. Comment on the influence of beam stiffness on the design quantities.

The columns of the frame of Problem 6.14 with condition (a) (i.e., rigid beam) are hinged at
the base. For the same design earthquake, determine the design values of lateral deformation
and bending moments on the columns. Comment on the influence of base fixity on the design
deformation and bending moments.

Determine the peak response of the one-story industrial building of Example 1.2 to ground
motion characterized by the design spectrum of Fig. 6.9.5 scaled to a peak ground motion
acceleration of 0.25g.

(a) For north-south excitation determine the lateral displacement of the roof and the bending
moments in the columns.

(b) For east-west excitation determine the lateral displacement of the roof and the axial force
in each brace.

A small one-story reinforced-concrete building shown in Fig. P6.17 is idealized as a massless
frame supporting a total dead load of 10 kips at the beam level. Each 10-in.-square column
is hinged at the base; the beam may be assumed to be rigid in flexure; and E = 3 x 10 ksi.
Determine the peak response of this structure to ground motion characterized by the design
spectrum of Fig. 6.9.5 scaled to 0.25g peak ground acceleration. The response quantities of
interest are the displacement at the top of the frame and the bending moments in the two
columns. Draw the bending moment diagram.

10¢
20¢

Figure P6.17
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6.18

6.19

6.20

6.21

6.22

6.23

A one-story steel frame of 24-ft span and 12-ft height has the following properties: The second
moments of cross-sectional area for beam and columns are I, = 160 in* and I, = 320 in?,
respectively; the elastic modulus for steel is 30 x 103 ksi. For purposes of dynamic analysis
the frame is considered massless with a weight of 100 kips lumped at the beam level; the
columns are clamped at the base; the damping ratio is estimated at 5%. Determine the peak
values of lateral displacement at the beam level and bending moments throughout the frame
due to the design spectrum of Fig. 6.9.5 scaled to a peak ground acceleration of 0.5g.

Solve Problem 6.18 assuming that the columns are hinged at the base. Comment on the
influence of base fixity on the design deformation and bending moments.

The ash hopper in Fig. 6.20 consists of a bin mounted on a rigid platform supported by four
columns 24 ft long. The weight of the platform, bin, and contents is 100 kips and may be
taken as a point mass located 6 ft above the bottom of the platform. The columns are braced
in the longitudinal direction, that is, normal to the plane of the paper, but are unbraced in the
transverse direction. The column properties are: A = 20 in%, E = 29,500 ksi, / = 2000 in*,
and S = 170 in3. Taking the damping ratio to be 5%, find the peak lateral displacement and
the peak stress in the columns due to gravity and the earthquake characterized by the design
spectrum of Fig. 6.9.5 scaled to % g acting in the transverse direction. Take the columns to be
clamped at the base and at the rigid platform. Neglect axial deformation of the column and
gravity effects on the lateral stiffness.

24

— Figure P6.20

The structure of Example 1.7 subjected to rotational acceleration iigg = §(¢) of the foundation.
Derive an equation for the rotation ug () of the roof slab in terms of I, ky, ky, b, and d.
Neglect damping.

The peak response of the system described in Examples 1.7 and 2.4 due to rotational ground
acceleration iigg (see Fig. E1.7) is to be determined; ¢ = 5%. The design spectrum for
translational ground acceleration (b/2)iige is given by Fig. 6.9.5 scaled to a peak ground
acceleration of 0.05g. Determine the displacement at each corner of the roof slab, the base
torque, and the bending moments about the x and y axes at the base of each column.

For the design earthquake at a site, the peak values of ground acceleration, velocity, and dis-
placement have been estimated: iig, = 0.5g, tigo = 24 in./sec, and ug, = 18 in. For systems
with 2% damping ratio, construct the 50th and 84.1th percentile design spectra.
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(a) Plot both spectra, together, on four-way log paper.

(b) Plot the 84.1th percentile spectrum for pseudo-acceleration on log-log paper, and deter-
mine the equations for A(7;) for each branch of the spectrum and the period values at the
intersections of the branches.

(c) Plot the spectrum of part (b) on a linear-linear graph (the 7;, scale should cover the range
0to 5 sec).
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We have shown that the peak base shear induced in a linearly elastic system by ground
motion is V, = (A/g)w, where w is the weight of the system and A is the pseudo-
acceleration spectrum ordinate corresponding to the natural vibration period and damp-
ing of the system (Chapter 6). Most buildings are designed, however, for base shear
smaller than the elastic base shear associated with the strongest shaking that can occur
at the site. This becomes clear from Fig. 7.1, wherein the base shear coefficient A/g

Elastic design spectrum

'Ligo =04g

Internationa
R=15t8

0 1 2 3
Natural vibration period Tn, sec

Figure 7.1 Comparison of base shear

coefficients from elastic design spectrum

and International Building Code.
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from the design spectrum of Fig. 6.9.5, scaled by 0.4 to correspond to peak ground
acceleration of 0.4g, is compared with the base shear coefficient specified in the 2000
International Building Code. This disparity implies that buildings designed for the code
forces would be deformed beyond the limit of linearly elastic behavior when subjected to
ground motions represented by the 0.4g design spectrum. Thus it should not be surprising
that buildings suffer damage during intense ground shaking. However, if an earthquake
causes damage that is too severe to be repaired economically (Figs. 7.2 and 7.3) or it
causes a building to collapse (Fig. 7.4), the design was obviously flawed. The challenge
to the engineer is to design the structure so that the damage is controlled to an acceptable
degree.

The response of structures deforming into their inelastic range during intense ground
shaking is therefore of central importance in earthquake engineering. This chapter is con-
cerned with this important subject. After introducing the elastoplastic system and the
parameters describing the system, the equation of motion is presented and the various
parameters describing the system and excitation are identified. Then the earthquake re-
sponse of elastic and inelastic systems is compared with the objective of understanding
how yielding influences structural response. This is followed by a procedure to deter-
mine the response spectrum for yield force associated with specified values of the duc-
tility factor, together with a discussion of how the spectrum can be used to determine
the design force and deformation for inelastic systems. The chapter closes with a proce-
dure to determine the design spectrum for inelastic systems from the elastic design spec-
trum, followed by a discussion of the important distinction between design and response
spectra.

7.1 FORCE-DEFORMATION RELATIONS
7.1.1 Laboratory Tests

Since the 1960s hundreds of laboratory tests have been conducted to determine the force—
deformation behavior of structural components for earthquake conditions. During an earth-
quake structures undergo oscillatory motion with reversal of deformation. Cyclic tests
simulating this condition have been conducted on structural members, assemblages of
members, reduced-scale models of structures, and on small full-scale structures. The ex-
perimental results indicate that the cyclic force—deformation behavior of a structure de-
pends on the structural material (Fig. 7.1.1) and on the structural system. The force—
deformation plots show hysteresis loops under cyclic deformations because of inelastic
behavior.

Since the 1960s many computer simulation studies have focused on the earthquake
response of SDF systems with their force—deformation behavior defined by idealized ver-
sions of experimental curves, such as in Fig. 7.1.1. For this chapter, the simplest such
idealized force—deformation behavior is chosen.
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Figure 7.2 The six-story Imperial County Services Building was overstrained by the
Imperial Valley, California, earthquake of October 15, 1979. The building is located in
El Centro, California, 9 km from the causative fault of the Magnitude 6.5 earthquake; the
peak ground acceleration near the building was 0.23g. The first-story reinforced-concrete
columns were overstrained top and bottom with partial hinging. The four columns at the
right end were shattered at ground level, which dropped the end of the building about
6 in.; see detail. The building was demolished. (Courtesy of K. V. Steinbrugge Collection,
Earthquake Engineering Research Center, University of California at Berkeley.)
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© (d)

Figure 7.3 The O’Higgin’s Tower, built in 2009, is a 21-story reinforced-concrete build-
ing with an unsymmetric (in plan) shear wall and column-resisting system that is discon-
tinuous and highly irregular over height. Located in Concepcion, 65 miles from the point
of the initial rupture of the fault causing the Magnitude 8.8 Offshore Maule Region, Chile,
earthquake of February 27, 2010, the building experienced very strong shaking. The dam-
age was so extensive—including collapse of its 12th floor—that the building is slated to be
demolished: (a) east face; (b) southeast face; (c) south face; and (d) southeast face: three
upper floors and machine room. (Courtesy of Francisco Medina.)
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(b)

Figure 7.4 Psychiatric Day Care Center: (a) before and (b) after the San Fernando, Cali-
fornia, earthquake, Magnitude 6.4, February 9, 1971. The structural system for this two-
story reinforced-concrete building was a moment-resisting frame. However, the masonry
walls added in the second story increased significantly the stiffness and strength of this
story. The first story of the building collapsed completely. (Photograph by V. V. Bertero
in W. G. Godden collection, National Information Service for Earthquake Engineering,
University of California, Berkeley.)
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Figure 7.1.1 Force—deformation relations for structural components in different materials: (a) struc-
tural steel (from H. Krawinkler, V. V. Bertero, and E. P. Popov, “Inelastic Behavior of Steel Beam-
to Column Subassemblages,” Report No. EERC 71-7, University of California, Berkeley, 1971);
(b) reinforced concrete [from E. P. Popov and V. V. Bertero, “On Seismic Behavior of Two R/C Struc-
tural Systems for Tall Buildings,” in Structural and Geotechnical Mechanics (ed. W. J. Hall), Prentice
Hall, Englewood Cliffs, N.J., 1977]; (c) masonry [from M. J. N. Priestley, “Masonry,” in Design of
Earthquake Resistant Structures (ed. E. Rosenblueth), Pentech Press, Plymouth, U.K., 1980].

7.1.2 Elastoplastic Idealization

Consider the force—deformation relation for a structure during its initial loading shown
in Fig. 7.1.2. It is convenient to idealize this curve by an elastic—perfectly plastic (or
elastoplastic for brevity) force—deformation relation because this approximation permits,
as we will see later, the development of response spectra in a manner similar to linearly
elastic systems. The elastoplastic approximation to the actual force—deformation curve is

Is
A

1y

Idealized

Figure 7.1.2 Force—deformation
» i/ curve during initial loading: actual and
elastoplastic idealization.




264 Earthquake Response of Inelastic Systems Chap. 7

f S A
Sy >
k
1 > U
Mﬂl
k
1
'j y .
Figure 7.1.3 Elastoplastic
force—deformation relation.

drawn, as shown in Fig. 7.1.2, so that the areas under the two curves are the same at the
value selected for the maximum displacement u,,. On initial loading this idealized system
is linearly elastic with stiffness k as long as the force is less than f. Yielding begins when
the force reaches f, the yield strength. The deformation at which yielding begins is u,,
the yield deformation. Yielding takes place at constant force f, (i.e., the stiffness is zero).
Figure 7.1.3 shows a typical cycle of loading, unloading, and reloading for an elasto-
plastic system. The yield strength is the same in the two directions of deformation. Unload-
ing from a point of maximum deformation takes place along a path parallel to the initial
elastic branch. Similarly, reloading from a point of minimum deformation takes place
along a path parallel to the initial elastic branch. The cyclic force—deformation relation
is path dependent; for deformation u at time ¢ the resisting force fs depends on the prior
history of motion of the system and whether the deformation is currently increasing or
decreasing. Thus, the resisting force is an implicit function of deformation: f; = f;(u).

7.1.3 Corresponding Linear System

It is desired to evaluate the peak deformation of an elastoplastic system due to earthquake
ground motion and to compare this deformation to the peak deformation caused by the
same excitation in the corresponding linear system. This elastic system is defined to have
the same stiffness as the stiffness of the elastoplastic system during its initial loading; see
Fig. 7.1.4. Both systems have the same mass and damping. Therefore, the natural vibration
period of the corresponding linear system is the same as the period of the elastoplastic
system undergoing small (1 < u,) oscillations. At larger amplitudes of motion the natural
vibration period is not defined for inelastic systems.
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» 14 Figure 7.1.4 Elastoplastic system and its
Uy Uy U corresponding linear system.

7.2 NORMALIZED YIELD STRENGTH, YIELD STRENGTH
REDUCTION FACTOR, AND DUCTILITY FACTOR

The normalized yield strength 7y of an elastoplastic system is defined as

F=b

Jo Uo
where f, and u, are the peak values of the earthquake-induced resisting force and defor-
mation, respectively, in the corresponding linear system. (For brevity the notation f, has
been used instead of fs, employed in preceding chapters.) The second part of Eq. (7.2.1)
is obvious because f, = ku, and f, = ku,. We may interpret f, as the minimum strength
required for the structure to remain linearly elastic during the ground motion. Normal-
ized yield strength less than unity implies that the yield strength of the system is less than
the minimum strength required for the system to remain elastic during the ground motion.
Such a system will yield and deform into the inelastic range. The normalized yield strength
of a system that remains linearly elastic is equal to unity because such a system can be in-
terpreted as an elastoplastic system with f, = f;,. This system will deform exactly up to
the yield deformation during the ground motion.

Alternatively, f, can be related to f, through a yield strength reduction factor R,
defined by

(7.2.1)

R, =Jo _ M (7.2.2)

L

Obviously, R, is the reciprocal of fv; R, is equal to 1 for linearly elastic systems and R,
greater than 1 implies that the system is not strong enough to remain elastic during the
ground motion. Such a system will yield and deform into the inelastic range.

The peak, or absolute (without regard to algebraic sign) maximum, deformation of
the elastoplastic system due to the ground motion is denoted by u,,. It is meaningful to
normalize u,, relative to the yield deformation of the system:

p=2 (7.2.3)

Uy
This dimensionless ratio is called the ductility factor. For systems deforming into the
inelastic range, by definition, u,, exceeds u, and the ductility factor is greater than unity.
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The corresponding linear system may be interpreted as an elastoplastic system with f, =
[, implying that the ductility factor is unity. Later, we relate the peak deformations u,, and
u, of the elastoplastic and corresponding linear systems. Their ratio can be expressed as

U = I
— =ufy=— (7.2.4)
U, R,

This equation follows directly from Eqgs. (7.2.1) to (7.2.3).

7.3 EQUATION OF MOTION AND CONTROLLING PARAMETERS

The governing equation for an inelastic system, Eq. (1.7.5), is repeated here for conve-
nience:

mii + cii + fs(u) = —miig (1) (7.3.1)

where the resisting force fs(u) for an elastoplastic system is shown in Fig. 7.1.3. Equa-
tion (7.3.1) will be solved numerically using the procedures of Chapter 5 to determine u(¢).
The response results presented in this chapter were obtained by the average acceleration
method using a time step Ar = 0.02 sec, which was further subdivided to detect the tran-
sition from elastic to plastic branches, and vice versa, in the force—deformation relation
(Section 5.7).

For a given ii,(f), u(t) depends on three system parameters: w,, {, and u,, in ad-
dition to the form of the force—deformation relation; here the elastoplastic form has been
selected. To demonstrate this fact, Eq. (7.3.1) is divided by m to obtain

ii + 20 wytt + Wl fs(u) = —iig (1) (7.3.2)
where
Y LA Fowy = L2 (7.3.3)
m 2m w, fy

Itis clear from Eq. (7.3.2) that u(¢) depends on w,, ¢, and u,. The quantity w, is the natural
frequency (7, = 2m/w, is the natural period) of the inelastic system vibrating within its
linearly elastic range (i.e., u < u,). It is also the natural frequency of the corresponding
linear system. We will also refer to w, and 7}, as the small-oscillation frequency and small-
oscillation period, respectively, of the inelastic system. Similarly, ¢ is the damping ratio of
the system based on the critical damping 2mw, of the inelastic system vibrating within its
linearly elastic range. It is also the damping ratio of the corresponding linear system. The
function fs(u) describes the force—deformation relation in partially dimensionless form,
as shown in Fig. 7.3.1a.

For a given ii,(t), the ductility factor u depends on three system parameters: w,,
¢, and 7y; recall that ?} is the normalized yield strength of the elastoplastic system. This
can be demonstrated as follows. First, Eq. (7.3.2) is rewritten in terms of p(¢) = u(t)/u,.
Substituting u(t) = wu, (1), u(t) = u,p1(t), and ii(t) = u,fi(¢) in Eq. (7.3.2) and dividing
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Figure 7.3.1 Force—deformation relations in normalized form.

by u, gives

i + 26wt + o fs (1) = —o; ”Z—(’) (7.34)

¥
where a, = f,/m may be interpreted as the acceleration of the mass necessary to produce
the yield force f,, and fs(u) is the force—deformation relation in dimensionless form
(Fig. 7.3.1b). The acceleration ratio iiy(¢)/a, is the ratio between the ground acceleration
and a measure of the yield strength of the structure. Equation (7.3.4) indicates that doubling
the ground accelerations ii, (t) will produce the same response () as if the yield strength
had been halved.

Second, we observe from Eq. (7.3.4) that for a given ii,(¢) and form for fs(M), say
elastoplastic, p(¢) depends on w,, ¢, and a,. In turn, a, depends on w,, ¢, and Ty; this can
be shown by substituting Eq. (7.2.1) in the definition of a, = f,/m to obtaina, = ’u, ?y,
and noting that the peak deformation u, of the corresponding linear system depends on w,
and ¢. We have now demonstrated that for a given ii,(¢), u depends on w,, ¢, and ?}

7.4 EFFECTS OF YIELDING

To understand how the response of SDF systems is affected by inelastic action or yielding,
in this section we compare the response of an elastoplastic system to that of its corre-
sponding linear system. The excitation selected is the El Centro ground motion shown in
Fig. 6.1.4.

7.4.1 Response History

Figure 7.4.1 shows the response of a linearly elastic system with weight w, natural vibra-
tion period 7, = 0.5 sec, and no damping. The time variation of deformation shows that
the system oscillates about its undeformed equilibrium position and the peak deformation,
u, = 3.34 in.; this is also the deformation response spectrum ordinate for 7,, = 0.5 sec and
¢ = 0 (Fig. 6.6.6). Also shown is the time variation of the elastic resisting force fs; the
peak value of this force f, is given by f,/w = 1.37. This is the minimum strength required



268 Earthquake Response of Inelastic Systems Chap. 7

O
T
T, J'nlnnmmmnmnnnmmnnmHHHHHHHH
S A AR

Time, sec

Figure 7.4.1 Response of linear system with 7, = 0.5 sec and ¢ = 0 to El Centro ground
motion.

for the structure to remain elastic. In passing, note from Eq. (7.3.1) that for undamped
systems, fs(t)/w = —ii'(t)/g; recall that i is the total acceleration of the mass. Thus
the peak value of this acceleration is i/, = 1.37g; this is also the acceleration spectrum
ordinate for 7, = 0.5 sec and ¢ = 0.

Figure 7.4.2 shows the response of an elastoplastic system having the same mass
and initial stiffness as the linearly elastic system, with normalized strength ?y = 0.125 (or
yield strength reduction factor R, = 8). The yield strength of this system is f, = 0.125f,,
where f, = 1.37w (Fig. 7.4.1); therefore, f, = 0.125(1.37w) = 0.171w. To show
more detail, only the first 10 sec of the response is shown in Fig. 7.4.2, which is orga-
nized in four parts: (a) shows the deformation u(#); (b) shows the resisting force fg()
and acceleration i’ (r); (c) identifies the time intervals during which the system is yield-
ing; and (d) shows the force—deformation relation for one cycle of motion. In the be-
ginning, up to point b, the deformation is small, fs < f,, and the system is vibrating
within its linearly elastic range. We now follow in detail a vibration cycle starting at
point @ when u and fg are both zero. At this point the system is linearly elastic and re-
mains so until point b. When the deformation reaches the yield deformation for the first
time, identified as b, yielding begins. From b to c¢ the system is yielding (Fig. c), the
force is constant at f, (Fig. b), and the system is on the plastic branch b—c of the force—
deformation relation (Fig. d). At ¢, a local maximum of deformation, the velocity is zero,
and the deformation begins to reverse (Fig. a); the system begins to unload elastically
along c—d (Fig. d) and is not yielding during this time (Fig. ¢). Unloading continues until
point d (Fig. d), when the resisting force reaches zero. Then the system begins to de-
form and load in the opposite direction and this continues until fg reaches — f, at point e
(Figs. b and d). Now yielding begins in the opposite direction and continues until point f
(Fig. ¢); fs = — f, during this time span (Fig. b) and the system is moving along the plastic
branch e—f (Fig. d). At f alocal minimum for deformation, the velocity is zero, and the
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Figure 7.4.2 Response of elastoplastic system with 7, = 0.5 sec, { = 0, and ?} = 0.125 to El
Centro ground motion: (a) deformation; (b) resisting force and acceleration; (c) time intervals of
yielding; (d) force—deformation relation.

deformation begins to reverse (Fig. a); the system begins to reload elastically along f—g
(Fig. d) and is not yielding during this time (Fig. c). Reloading brings the resisting force in
the system to zero at g, and it continues along this elastic branch until the resisting force
reaches + f,.

The time variation of deformation of the yielding system differs from that of the elas-
tic system. Unlike the elastic system (Fig. 7.4.1), the inelastic system after it has yielded
does not oscillate about its initial equilibrium position. Yielding causes the system to drift
from its initial equilibrium position, and the system oscillates around a new equilibrium
position until this gets shifted by another episode of yielding. Therefore, after the ground
has stopped shaking, the system will come to rest at a position generally different from its
initial equilibrium position (i.e., permanent deformation remains). Thus a structure that has
undergone significant yielding during an earthquake may not stand exactly vertical at the
end of the motion. For example, the roof of the pergola shown in Fig. 1.1.1 was displaced
by 9 in. relative to its original position at the end of the Caracas, Venezuela, earthquake of
July 29, 1967; this permanent displacement resulted from yielding of the pipe columns. In
contrast, a linear system returns to its initial equilibrium position following the decay of
free vibration after the ground has stopped shaking. The peak deformation, 1.71 in., of the
elastoplastic system is different from the peak deformation, 3.34 in., of the corresponding
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linear system (Figs. 7.4.1 and 7.4.2); also, these peak values are reached at different times
in the two cases.

We next examine how the response of an elastoplastic system is affected by its yield
strength. Consider four SDF systems all with identical properties in their linearly elas-
tic range: 7, = 0.5 sec and { = 5%, but they differ in their yield strength: Ty =1,
0.5, 0.25, and 0.125. ?y = 1 implies a linearly elastic system; it is the correspond-
ing linear system for the other three elastoplastic systems. Decreasing values of ?y in-
dicate smaller yield strength f,. The deformation response of these four systems to the
El Centro ground motion is presented in Fig. 7.4.3. The linearly elastic system (7y =1)
oscillates around its equilibrium position and its peak deformation u, = 2.25 in. The
corresponding peak value of the resisting force is f, = ku, = 0.919w, the minimum
strength required for a system with 7,, = 0.5 and ¢ = 5% to remain elastic during the
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Figure 7.4.3 Deformation response and yielding of four systems due to El Centro ground motion;
T, = 0.5sec, { = 5%; and f, = 1,0.5,0.25, and 0.125.
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selected ground motion. The other three systems with smaller yield strength— f, = 0.5 f,,,
0.25f,, and 0.125 f,, respectively—are therefore expected to deform into the inelastic
range. This expectation is confirmed by Fig. 7.4.3, where the time intervals of yielding
of these systems are identified. As might be expected intuitively, systems with lower yield
strength yield more frequently and for longer intervals. With more yielding, the perma-
nent deformation u, of the structure after the ground stops shaking tends to increase, but
this trend may not be perfect. For the values of 7, and ¢ selected, the peak deforma-
tions u,, of the three elastoplastic systems are smaller than the peak deformation u, of
the corresponding linear system. This is not always the case, however, because the rel-
ative values of u,, and u, depend on the natural vibration period 7, of the system and
the characteristics of the ground motion, and to a lesser degree on the damping in the
system.

The ductility factor for an elastoplastic system can be computed using Eq. (7.2.4).
For example, the peak deformations of an elastoplastic system with 7y = 0.25 and the
corresponding linear system are u,, = 1.75 in. and u, = 2.25 in., respectively. Substituting
for u,,, u,, and 7y in Eq. (7.2.4) gives the ductility factor: u = (1/0.25)(1.75/2.25) =
3.11. This is the ductility demand imposed on this elastoplastic system by the ground
motion. It represents a requirement on the design of the system in the sense that its ductility
capacity (i.e., the ability to deform beyond the elastic limit) should exceed the ductility
demand.

7.4.2 Ductility Demand, Peak Deformations, and Normalized
Yield Strength

In this section we examine how the ductility demand and the relationship between u,, and
u, depend on the natural vibration period 7,, and on the normalized yield strength 7y or its
reciprocal, the yield strength reduction factor R,. Figure 7.4.4ais a plot of u,, as a function
of T, for four values of?y =1, 0.5, 0.25, and 0.125; u, is the same as u,, for 7y = 1.
(Note that u, and u,, have been divided by the peak ground displacement u,, = 8.4 in,;
see Fig. 6.1.4.) Figure 7.4.4b shows the ratio u,,/u,. In Fig. 7.4.5 the ductility factor
w is plotted versus 7,, for the same four values of ﬁ, w = 1if ?y = 1. The response
histories presented in Fig. 7.4.3 for systems with 7, = 0.5 sec and { = 5% provide the
value for u, = 2.25 in., and u,, = 1.62, 1.75, and 2.07 in. for ?y = 0.5, 0.25, and 0.125,
respectively. Two of these four data points are identified in Fig. 7.4.4a. The ductility
demands u for the three elastoplastic systems are 1.44, 3.11 (computed in Section 7.4.1),
and 7.36, respectively. These three data points are identified in Fig. 7.4.5. Also identified
in these plots are the period values T, Tj, T¢, T4, T., and T that define the various spectral
regions; these were introduced in Section 6.8.

We now study the trends for each spectral region based on the data in Figs. 7.4.4
and 7.4.5. For very-long-period systems (7, > Ty) in the displacement-sensitive region
of the spectrum, the deformation u,, of an elastoplastic system is independent of ?y and is
essentially equal to the peak deformation u, of the corresponding linear system; the ratio
u,/u, > 1. This observation can be explained as follows: For a fixed mass, such a system
is very flexible and, as mentioned in Section 6.8, its mass stays still while the ground
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beneath moves. It experiences a peak deformation equal to the peak ground displacement,
independent of ?} Thus u,, >~ u, >~ uy, and Eq. (7.2.4) gives =~ 1/3. or u >~ Ry, a
result confirmed by Fig. 7.4.5.

For systems with 7, in the velocity-sensitive region of the spectrum, u,, may be
larger or smaller than u, (i.e., u,,/u, may or may not exceed 1); both are affected irregu-
larly by variations in 7),; the ductility demand 4« may be larger or smaller than R, ; and the
influence of ?y, although small, is not negligible.

For systems in the acceleration-sensitive region of the spectrum, u,, is greater than
u,, and u,, /u, increases with decreasing ?) (i.e., decreasing yield strength) and decreasing
T,,. Therefore, according to Eq. (7.2.4), the ductility demand can be much larger than Ry,
an observation confirmed by Fig. 7.4.5. This result implies that the ductility demand on
very-short-period systems may be large even if their strength is only slightly below that
required for the system to remain elastic.

In the preceding paragraphs we have examined the ductility demand and the rela-
tionship between the peak deformations u,, and u, for elastoplastic and corresponding
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linear systems, and their dependence on 7,, and f, or R,. Researchers have demonstrated
that these relationships identified for the various regions of the response spectrum for one
ground motion are valid for the corresponding spectral regions of other ground motions.
The period values 7, Ty, T, Ty, T,, and Ty separating these regions vary from one ground
motion to the next, however, as mentioned in Section 6.8.

7.5 RESPONSE SPECTRUM FOR YIELD DEFORMATION AND YIELD
STRENGTH

For design purposes it is desired to determine the yield strength f, (or yield deformation
uy) of the system necessary to limit the ductility demand imposed by the ground motion
to a specified value. In their 1960 paper, A. S. Veletsos and N. M. Newmark developed a
response spectrum for elastoplastic systems that readily provides the desired information.
We present next a procedure to determine this spectrum, which is central to understanding
the earthquake response and design of yielding structures.

7.5.1 Definitions

Response spectra are plotted for the quantities
Dy=u, Vy=w,u, A, =0lu, (7.5.1)

Note that D, is the yield deformation u, of the elastoplastic system, not its peak defor-
mation u,,. A plot of D, against 7, for fixed values of the ductility factor p is called
the yield—deformation response spectrum. Following the definitions for linearly elastic
systems (Section 6.6), similar plots of V, and A, are called the pseudo-velocity response
spectrum and pseudo-acceleration response spectrum, respectively.

These definitions of Dy, V), and A, for elastoplastic systems are consistent with the
definitions of D, V, and A for linear systems. This becomes apparent by interpreting a
linear system with peak deformation u, as an elastoplastic system with yield deformation
uy = u,. Then Egs. (7.5.1) for the elastoplastic system are equivalent to Eqs. (6.6.1) and
(6.6.3) for linear systems.

The quantities Dy, V,, and A, can be presented in a single four-way logarithmic plot
in the same manner as for linear systems. This is possible because these quantities are
related through

A)’ Tn 2
w—n =V, =w,D, or EA'V =V, = T,,Dy (7.5.2)

and these relations are analogous to Eq. (6.6.6) relating D, V, and A for linear systems.
The yield strength of an elastoplastic system is

fy="w (7.5.3)
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where w is the weight of the system. This result can be derived using Eq. (7.5.1) as follows:

fy =ku, =m(@u,) =mA, = = w

Observe that Eq. (7.5.3) is analogous to Eq. (6.7.2), repeated here for convenience:

A
fo=—w (7.5.4)
g

where A is the pseudo-acceleration response spectrum for linearly elastic systems.
7.5.2 Yield Strength for Specified Ductility

An interpolative procedure is necessary to obtain the yield strength of an elastoplastic sys-
tem for a specified ductility factor since the response of a system with arbitrarily selected
yield strength will seldom correspond to the desired ductility value. This becomes appar-
ent considering the response results of Fig. 7.4.3 for four systems, all having the same
T, = 0.5 sec and ¢ = 5%, but different yield strengths, as defined by the normalized yield
strength ?} = 1, 0.5, 0.25, and 0.125. The ductility factors for these four systems are
1, 1.44, 3.11, and 7.36 (Section 7.4.2). Clearly, these results do not provide the ?) value
corresponding to a specified ductility factor, say, 4.

These results provide the basis, however, to obtain the desired information. They
lead to a plot showing ?) (or Ry) as functions of p for a fixed 7, and ¢. The solid lines
in Fig. 7.5.1 show such plots for several values of 7, and { = 5%. In the plot for 7,, =
0.5 sec, three of the four pairs of ?) and p values mentioned in the preceding paragraph
are identified. To develop some insight into the trends, for each ﬁ two values of the
ductility factor are shown: u; /u,, where ;! is the maximum deformation in the positive
direction, and u,,/u,, where u,, is the absolute value of the largest deformation in the
negative direction. The solid line represents ., the larger of the two values of the ductility
factor.

Contrary to intuition, the ductility factor © does not always increase monotonically
as the normalized strength ?y decreases. In particular, more than one yield strength is
possible corresponding to a given . For example, the plot for 7,, = 2 sec features two
values of ?‘ corresponding to s = 5. This peculiar phenomenon occurs where the u,}, /u
and u,, /u, curves cross (e.g., points a or b in Fig. 7.5.1). Such a point often corresponds
to a local minimum of the ductility factor, which permits more than one value of ?) for a
slightly larger value of 1. For each p value, it is the largest ?y, or the largest yield strength,
that is relevant for design.

The yield strength f, of an elastoplastic system for a specified ductility factor j& can
be obtained using the corresponding 7‘ value and Eq. (7.2.1). To ensure accuracy in this
7y value it is obtained by an iterative procedure, not from a plot like Fig. 7.5.1. From the
available data pairs (?y, W) interpolation assuming a linear relation between log(?y) and
log(w) leads to ?y corresponding to the u specified. The response history of the system
with this ?y is computed to determine the ductility factor. If this is close enough to the
1 specified—say to within 1%—the ?, value is considered satisfactory; otherwise, it is
modified until satisfactory agreement is reached.
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Figure 7.5.1 Relationship between normalized strength (or reduction factor) and ductility factor due
to El Centro ground motion; { = 5%.

7.5.3 Construction of Constant-Ductility
Response Spectrum

The procedure to construct the response spectrum for elastoplastic systems corresponding
to specified levels of ductility factor is summarized as a sequence of steps:

1. Numerically define the ground motion ii, (1).

2. Select and fix the damping ratio ¢ for which the spectrum is to be plotted.
3. Select a value for 7,,.
4

. Determine the response u(#) of the linear system with 7,, and ¢ equal to the values
selected. From u(¢) determine the peak deformation u, and the peak force f, = ku,.
Such results for 7,, = 0.5 sec and ¢ = 5% are shown in Fig. 7.4.3a.

5. Determine the response u(7) of an elastoplastic system with the same 7, and ¢ and
yield force f, = fy fo, with a selected fy < 1. From u(t) determine the peak
deformation u,, and the associated ductility factor from Eq. (7.2.4). Repeat such an
analysis for enough values of f} to develop data points ( fv, w) covering the ductility
range of interest. Such results are shown in Fig. 7.4.3 for fy = 0.5, 0.25, and 0.125,
which provide three data points for the 7,, = 0.5 case in Fig. 7.5.1.
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6. a. For a selected u determine the ?y value from the results of step 5 using the
procedure described in Section 7.5.2. If more than one 7y value corresponds to
a particular value of u, the largest value of ?} is chosen.

b. Determine the spectral ordinates corresponding to the value of 7‘ determined in
step 6a. Equation (7.2.1) gives u,, from which Dy, V,, and A, can be determined
using Eq. (7.5.1). These data provide one point on the response spectrum plots
of Figs. 7.5.2 and 7.5.3.

7. Repeat steps 3 to 6 for a range of 7, resulting in the spectrum valid for the u value
chosen in step 6a.

8. Repeat steps 3 to 7 for several values of u.

Constructed by this procedure, the response spectrum for elastoplastic systems with
¢ = 5% subjected to the El Centro ground motion is presented for © = 1, 1.5, 2,4, and 8 in
two different forms: linear plot of A, /g versus 7T, (Fig. 7.5.2) and a four-way logarithmic
plot showing Dy, V,, and A, (Fig. 7.5.3).

7.6 YIELD STRENGTH AND DEFORMATION FROM THE
RESPONSE SPECTRUM

Given the excitation, say the El Centro ground motion, and the properties 7, and ¢ of an
SDF system, it is desired to determine the yield strength for the system consistent with
a ductility factor p. Corresponding to 7,, ¢, and u, the value of A, /g is read from the
spectrum of Fig. 7.5.2 or 7.5.3 and substituted in Eq. (7.5.3) to obtain the desired yield
strength f,. An equation for the peak deformation can be derived in terms of A, as follows.
From Eq. (7.2.3):

Uy = [AULy (7.6.1)
where
2
‘= % _ <2T_7T> A, (1.6.2)
Putting Eqgs. (7.6.1) and (7.6.2) together gives
T \2
Um = 1 (E) A, (7.6.3)

As an example, for 7, = 0.5 sec, { = 5%, and u = 4, Fig. 7.5.2 gives A, /g = 0.179.
From Eq. (7.5.3), f, = 0.179w. From Eq. (7.6.2), u, = (0.5/2n)20.179g = 0.438 in.,
and Eq. (7.6.1) gives u,, = 4(0.438) = 1.752 in.

7.7 YIELD STRENGTH-DUCTILITY RELATION

The yield strength f, required of an SDF system permitted to undergo inelastic defor-
mation is less than the minimum strength necessary for the structure to remain elastic.
Figure 7.5.2 shows that the required yield strength is reduced with increasing values of the
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Figure 7.7.1 Normalized strength ?\ of elastoplastic systems as a function of natural
vibration period 7, for © = 1, 1.5, 2, 4, and 8; ¢ = 5%; El Centro ground motion.

ductility factor. Even small amounts of inelastic deformation, corresponding to u = 1.5,
produce a significant reduction in the required strength. Additional reductions are achieved
with increasing values of p but at a slower rate.

To study these reductions quantitatively, Fig. 7.7.1 shows the normalized yield
strength 7y and yield strength reduction factor R, of elastoplastic systems as a function
of T, for four values of . This is simply the data of Fig. 7.5.2 (or Fig. 7.5.3) plotted
in a different form. From Fig. 7.5.2, for each value of 7, the u = 1 curve gives f,/w
and the curve for another p gives the corresponding f,/w. The normalized strength ?y
is then computed from Eq. (7.2.1). For example, consider systems with 7, = 0.5 sec;
fo =0.919w and f, = 0.179w for u = 4; the corresponding ﬁ = 0.195. Such computa-
tions for © = 1, 1.5, 2, 4, and 8 give fv =1, 0.442, 0.370, 0.195, and 0.120 (or 100, 44.2,
37.0, 19.5, and 12.0%), respectively; three of these data points are identified in Fig. 7.7.1.
Repeating such computations for a range of 7,, leads to Fig. 7.7.1, wherein the period val-
ues T,, Ty, T, Ty, T,, and T that define the various spectral regions are identified; these
were introduced in Section 7.4.

The practical implication of these results is that a structure may be designed
for earthquake resistance by making it strong, by making it ductile, or by designing it
for economic combinations of both properties. Consider again an SDF system with
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T, = 0.5 sec and ¢ = 5% to be designed for the El Centro ground motion. If this system
is designed for a strength f, = 0.919w or larger, it will remain within its linearly elastic
range during this excitation; therefore, it need not be ductile. On the other hand, if it can
develop a ductility factor of 8, it need be designed for only 12% of the strength f, required
for elastic behavior. Alternatively, it may be designed for strength equal to 37% of f, and
a ductility capacity of 2; or strength equal to 19.5% of f, and a ductility capacity of 4.
For some types of materials and structural members, ductility is difficult to achieve, and
economy dictates designing for large lateral forces; for others, providing ductility is much
easier than providing lateral strength, and the design practice reflects this. If the combina-
tion of strength and ductility provided is inadequate, the structure may be damaged to an
extent that repair is not economical (see Fig. 7.2), or it may collapse (see Fig. 7.3).

The strength reduction permitted for a specified allowable ductility varies with T7},.
As shown in Fig. 7.7.1, the normalized strength ?y tends to 1 (and the yield-strength reduc-
tion factor R, tends to 1), implying no reduction, at the short-period end of the spectrum;
and to Ty = 1/u (i.e., R, = p) at the long-period end of the spectrum. In between, ﬁ
determined for a single ground motion varies in an irregular manner. However, smooth
curves can be developed for design purposes (Section 7.10).

The normalized strength for a specified ductility factor also depends on the damp-
ing ratio ¢, but this dependence is not strong. It is usually ignored, therefore, in design
applications.

7.8 RELATIVE EFFECTS OF YIELDING AND DAMPING

Figure 7.8.1 shows the response spectra for linearly elastic systems for three values of vis-
cous damping: ¢ = 2, 5, and 10%. For the same three damping values, response spectra
for elastoplastic systems are presented for two different ductility factors: © = 4 and u = 8.
From these results the relative effects of yielding and damping are identified in this section.

The effects of yielding and viscous damping are similar in one sense but different in
another. They are similar in the sense that both mechanisms reduce the pseudo-acceleration
A, and hence the peak value of the lateral force for which the system should be designed.
The relative effectiveness of yielding and damping is quite different, however, in the vari-
ous spectral regions:

1. Damping has negligible influence on the response of systems with 7, > T in
the displacement-sensitive region of the spectrum, whereas for such systems the effects of
yielding on the design force are very important, but on the peak deformation u,, they are
negligible (Fig. 7.4.4).

2. Damping has negligible influence in the response of systems with 7,, < T, in
the acceleration-sensitive region of the spectrum, whereas for such system